Building Skew Resistant Hash Tables

Glines Alug

SAP Labs, Canada
gunes.aluc@sap.com

1 Introduction

Conventionally, hash tables rely on hashing techniques
that are static. This means that the hash value using
which a key gets inserted into the hash table is the same
as the one it gets looked up with. Consequently, when
the hash table is full (or a pre-determined load factor
is reached) or when the number of buckets in the hash
table need to be changed, all or a subset of the keys that
are stored in the hash table are redistributed using a new
hash function with the intention of distributing the keys
uniformly across the newly adjusted space. Consistent
hashing [2] is an improvement that aims to minimize the
number of keys that are redistributed every time the hash
table grows or shrinks, by relying on a hash function
that is consistent with the previously used hash function.
These techniques work well when the data are uniformly
distributed. Unfortunately, data are naturally skewed,
and hash functions are inherently imperfect. Therefore,
when static hashing is used in a hash table, hot spots —
which are inevitable — cause keys to unnecessarily and
frequently get redistributed, resulting in performance
stalls.

2 Contributions

In this presentation, we introduce our early work on
skew resistant hash tables where a continuously adap-
tive hash function is used to determine key placement.
This means that, in contrast to conventional hash ta-
bles with static hashing, the hash value using which a
key gets inserted into the hash table is not necessarily
the same as the one it is looked up with[1]. Because of
this relaxed constraint, the underlying hash function can
find the optimal placement for the key to be inserted
based on the current distribution of keys in the hash
table. Furthermore, it can adapt to changing distribu-
tions. In practice, what this means is that if there are
hot spots (e.g., keys that repeatedly hash to the same set
of hash buckets), the hash function will assign different
values to these keys, thereby, dissolving the hot spot.
To facilitate the computation of the hash function based
on the current distribution, as well as to maintain an
ongoing summary of the distribution, our work relies

on a combination of static hashing, counting using a suf-
ficiently large number of buckets and binary segment
trees. When the hash table needs to grow, instead of
relocating the keys, it relies on a consistently identifiable
coordinate scheme. Insertions, lookups and deletions are
detailed, and a lazy-relocation method is introduced for
cases when the distribution changes significantly such
that the hash value using which a key gets inserted into
the hash table starts to deviate significantly from the
value it is looked up with. In short, the key aspects of
skew resistant hash tables can be summarized as follows:

« Conventional hash tables rely on static hashing tech-
niques; skew resistant hash tables rely on dynamic
hashing techniques that can adapt to changing data
distributions and workloads.

« Conventional hash tables adapt to changes in the
data distribution by redistributing the keys which is
expensive; skew resistant hash tables adapt by mak-
ing adjustments to the internally used hash function
which is cheaper.

« Conventional hash tables aim to minimize key redis-
tribution by using consistent hashing techniques;
skew resistant hash tables rely on consistently iden-
tifiable coordinate schemes.

« Conventional hash tables eagerly relocate keys
when keys are inserted; skew resistant hash tables
lazily relocate keys when the keys are looked up if
and only if the hash of the key that is being looked
up has deviated significantly from its original inser-
tion position.

References

[1] G. Alug, M. T. Ozsu, and K. Daudjee. Building self-
clustering RDF databases using Tunable-LSH. The
VLDB Journal, 28(2):173-195, 2019.

[2] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Proceed-
ings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 654-663, 1997.



