Space-Efficient Dynamic Filter Expansion

Hyuhng Min Kim

Department of Computer Science

University of Toronto
hmkim@cs. toronto.edu

1 Introduction

A filter is a space-efficient probabilistic data structure
that encodes a set of keys to support approximate mem-
bership queries. It ensures that no existing key is ever
reported as missing (no false negatives), while tolerat-
ing a small probability of false positives to achieve sub-
stantial space savings. Because of their compact nature,
filters are typically kept in fast memory such as DRAM
or SRAM, even when the underlying dataset resides on
slower storage or remote servers. This allows systems to
efficiently eliminate non-existent keys before performing
costly disk or network lookups, thereby reducing both
latency and I/O overhead.

Many real-world applications manage ever-growing
datasets with unpredictable final sizes. Traditional filters
like Bloom filters [2] are static and must be pre-sized to
meet a desired false-positive rate. Rebuilding the filter
as data grows is impractical, as it requires a full dataset
scan. To overcome this, dynamic filters have been pro-
posed that expand incrementally without reconstruction.
The simplest approach links multiple filters in sequence,
directing new insertions to the latest one but forcing
queries to check all, which raises lookup latency and
false-positive probability.

Modern dynamic filters, such as quotient filters [1],
store fingerprints compactly in hash tables. When expan-
sion is required, they double the table size and utilize one
fingerprint bit to redistribute entries without rehashing
keys. The latest design, Aleph Filter [3], offers constant-
time operations and maintains a stable false-positive
rate under growth. Yet this flexibility comes at a steep
memory cost, diminishing the core space advantage of
filter-based designs.

2 Challenges

Unlike traditional hash tables, which can resize by any
factor through key rehashing, filters cannot access origi-
nal keys and thus cannot rehash. They typically double
in size by dedicating one fingerprint bit to slot address-
ing, resulting in at least 50% space overhead right after
expansion. This inefficiency is hard to avoid since a bit

is the smallest storage unit, making finer-grained scaling
challenging.

Furthermore, during expansion, the system allocates
a new, larger filter while retaining the original one in
memory to facilitate gradual entry migration. Although
this additional space consumption is temporary and sub-
sides once migration completes, it nevertheless requires
extra memory to be reserved during the process. Such
transient overhead can lead to memory pressure, caus-
ing other resources to be swapped out and ultimately
degrading overall system performance.

3 Our Work

We propose a dynamic filter that addresses both ineffi-
ciency and temporary space overhead in prior designs. It
stores fingerprints in a compact hash table and expands
by less than a factor of two using a novel technique
called Stretching. Stretching progressively increases en-
try spacing until the next power of two, when one fin-
gerprint bit is reassigned to remap entries. Further, an
in-place expansion mechanism with a sub-linear indirec-
tion layer removes transient memory costs and keeps
lookups cache-efficient.

References

[1] Michael A Bender, Martin Farach-Colton, Rob John-
son, Bradley C Kuszmaul, Dzejla Medjedovic, Pablo
Montes, Pradeep Shetty, Richard P Spillane, and Erez
Zadok. Don’t thrash: How to cache your hash on
flash. In 3rd Workshop on Hot Topics in Storage and
File Systems (HotStorage 11), 2011.

[2] Burton H Bloom. Space/time trade-offs in hash cod-
ing with allowable errors. Communications of the
ACM, 13(7):422-426, 1970.

[3] Niv Dayan, loana-Oriana Bercea, and Rasmus Pagh.
Aleph filter: To infinity in constant time. Proceedings
of the VLDB Endowment, 17(11):3644-3656, 2024.



