Parallel Oblivious Joins using Radix Partitioning

Nafis Ahmed

Sujaya Maiyya

David R. Cheriton School of Computer Science

University of Waterloo
{nafis.ahmed, smaiyya}@uwaterloo.ca

1 Abstract

Due to the cloud’s pay-as-you-go model, individuals and
organizations are increasingly moving from managing lo-
cal servers to renting storage from third-party providers.
This convenience, however, risks compromising the pri-
vacy of outsourced data. Encrypting data before out-
sourcing preserves confidentiality, but it prevents the
cloud from directly processing application queries. Hard-
ware enclaves such as Intel SGX and Intel TDX enable
cloud servers to process encrypted data without violating
confidentiality guarantees, yet they remain vulnerable to
side-channel leakages caused by data-dependent mem-
ory access patterns and control flow.

Oblivious query processing enables remote secure
computation over encrypted data while mitigating such
side-channel leakages. We present parallel oblivious algo-
rithms for binary non-foreign key and foreign-key joins
by introducing a new primitive: oblivious radix partition-
ing. Compared to the state-of-the-art, Obliviator, our join
algorithms reduce the required number and size of the
obliviously sorted tables, offering significant speed-ups.
Beyond joins, our oblivious radix partitioning technique
serves as a standalone primitive applicable to a broad
class of problems such as oblivious group-by and aggre-
gation, private set intersection and union, and private
contact discovery.

2 Overview

We observe that existing oblivious join algorithms using
enclaves [2, 3] are sort-merge joins. This research began
with the question: can we design an oblivious hash join?
At a high level, plaintext hash joins on tables R and S
first compute the hash of the join keys of the smaller
table R and store each key’s corresponding payload in a
hash table. In the second step, table S probes the hash
table by hashing its keys to find matching entries.
Making this algorithm oblivious, however, raises non-
trivial challenges because (i) repeated join keys in R cre-
ate hash collisions and can reveal the number of unique
keys in R, and/or (ii) repeated probing of the same hash
table entry leaks the distribution of repeated keys in

S — both leaking data dependent information to an ad-
versary. Mitigating this leakage requires de-duplicating
repeated keys from both tables, which in turn requires
an oblivious sort, rendering this scheme as a sort-merge
join. Therefore, while an oblivious hash join may be
constructed when both R and S have unique keys, this
fails to be secure for generalized joins. Given that our
join algorithms have to be sort-merge based, we ask: can
the algorithm leverage hash-based techniques in the merge
step to improve efficiency?

We answer affirmatively by first proposing an oblivi-
ous radix partitioning approach that divides input arrays
into disjoint partitions without leaking duplicate counts,
unlike vanilla radix partitioning. This is especially im-
portant for join operations, where duplicate keys are
common. Our join algorithms apply oblivious radix parti-
tioning independently to each input table, enabling tuple
comparisons only within corresponding partitions. When
input tables are presorted, our oblivious join algorithm
is the first to avoid re-sorting them.

We deploy our join algorithms [1] on Azure’s Intel
TDX machines. Our evaluation compares them with
Obliviator [3] across synthetic workloads, five real-world
datasets, and TPC-H queries. Results demonstrate the
advantage of reducing both the number and size of oblivi-
ously sorted tables, with the difference in execution times
being more pronounced for large datasets (100M to 500M
tuples). When scaling from 2 to 32 threads, our approach
maintains consistent speedups across dataset sizes, un-
like the baseline, demonstrating the effectiveness of radix
partitioning in parallel oblivious query execution.

References

[1] Code. https://github.com/dsg-uwaterloo/obl-radix.

[2] S.Krastnikov, F. Kerschbaum, and D. Stebila. Efficient
oblivious database joins. VLDB, 2020.

[3] A. Mavrogiannakis, X. Wang, 1. Demertzis, D. Pa-
padopoulos, and M. Garofalakis. Obliviator: Oblivi-
ous parallel joins and other operators in shared mem-
ory environments. USENIX Security, 2025.



