Implementing High-Performance Resilient Data Management:
What we Learned

Jelle Hellings
jhellings@mcmaster.ca

Nancy Kansal
kansanl@mcmaster.ca

Celine Sana
sanay@mcmaster.ca

Department of Computing & Software
McMaster University

1 Background

Recently, we have seen a lot of interest in, research on,
and development of resilient systems that can manage
data and process transactions even in the presence of net-
work, software, or hardware failure. Unfortunately, the
practical usage of resilient systems technologies remains
a niche in data-based applications: existing systems are
costly, hard to use, highly complex, and have limited
performance potential.

Typical resilient systems are operated by a consensus
protocol such as RAFT [4] (which can deal with crashes)
or PBFT [2] (which can deal with arbitrary failures) that
ensures agreement among all participating replicas on
which requests to process and in which order. Although
consensus is inherently complex, several works have illus-
trated how one can implement consensus with very high
throughputs [1, 3]. Unfortunately, these works describe
highly complex implementations that mainly focus on
providing the highest possible throughput at the cost of
ease-of-use and latency.

2 Problem Statement

To further push resilient systems and their usage in data
management and transaction processing into the main-
stream, we believe there is a strong need for improved
resilient system technologies that promote simplicity in
use and implementation, while still guaranteeing great
performance (i.e., high throughput with low latency).

Our research aims at developing these improved re-
silient system technologies by designing and implement-
ing a novel resilient system framework that is easy to
use, can support high performance, and has limited com-
plexity. In this talk, we will present what we learned
developing and implementing this framework. In spe-
cific, we will look at three orthogonal approaches toward
improving resilient system technologies:

1. the development of a high-performance framework
that simplifies the implementation of consensus pro-
tocols in a highly multi-threaded environment;

2. revisiting and redesigning existing consensus con-
sensus protocols toward enabling simpler and more-
efficient implementations; and

3. the development of new fault-tolerant primitives
that can manage resilient systems at lower cost than
existing consensus-based approaches.

Finally, we provide a practical evaluation of how these
approaches influence the design and implementation of
our novel high-performance resilient system framework.
In this evaluation, we analyze the potential impact of
compute power, network bandwidth, message delay, and
protocol architecture on both practical and theoretically-
achievable resilient system performance.

References

[1] Johannes Behl, Tobias Distler, and Ridiger Kapitza.
Consensus-oriented parallelization: How to earn
your first million. In Proceedings of the 16th Annual
Middleware Conference, pages 173-184. ACM, 2015.
doi:10.1145/2814576.2814800.

[2] Miguel Castro and Barbara Liskov. Practical byzan-
tine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398-461, 2002. doi:10.
1145/571637.571640.

[3] Suyash Gupta, Sajjad Rahnama, and Mohammad
Sadoghi. Permissioned blockchain through the look-
ing glass: Architectural and implementation lessons
learned. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 754—
764. IEEE, 2020. doi:10.1109/ICDCS47774.2020.
00012.

[4] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual
Technical Conference, pages 305-320. USENIX, 2014.


jhellings@mcmaster.ca
kansan1@mcmaster.ca
sanay@mcmaster.ca
https://doi.org/10.1145/2814576.2814800
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1109/ICDCS47774.2020.00012
https://doi.org/10.1109/ICDCS47774.2020.00012

	Background
	Problem Statement

