EFFICIENT COST BASED REWRITE IN A BOTTOM UP
OPTIMIZER

Qi Cheng, Yang Sun, Weidong Yu, Yuanxi Chen, Weicheng Wang, Chong Chen, Paul Larson

Toronto Distributed Scheduling and Data Engine Lab(2012 Laboratories)
Huawei Technologies Canada Co., Ltd.

1 Introduction

A typical modern query optimizer relies on two core
components: Query Rewrite (QRW) and Cost-Based Op-
timizer (CBO). The QRW applies logical transformation
rules, such as predicate pushdown or subquery-to-join
conversion, to restructure a query into a more efficient
equivalent form. Subsequently, the CBO generates al-
ternative physical execution plans, estimates their costs
and selects the most efficient. Query rewrites are driven
by predefined rules. A subset of these rules, known
as heuristic rewrite rules, are always applied because
they unconditionally improve performance. However,
another class, known as cost-based rewrite rules, chal-
lenges this clean separation between the QRW and CBO
phases. A cost-based rewrite is only beneficial if it leads
to a lower-cost execution plan. Consequently, the opti-
mizer cannot decide whether to apply such a rule during
the QRW phase without consulting the CBO to evaluate
the cost implications.

This architectural dilemma introduces significant com-
putational overhead. For each candidate cost-based
rewrite, the optimizer must pause the QRW process and
invoke the CBO to compare the estimated costs of the
original and rewritten queries. When multiple such rules
are considered, these CBO invocations dramatically in-
creases optimization time, in some cases rendering it
impractical.

To address this well-known efficiency challenge, we
propose a novel framework for a bottom-up optimizer.
Our approach leverages an educated guess, derived from
information available during the QRW phase, to establish
a tight cost upper bound. This bound intelligently prunes
the search space, guiding the optimizer toward better
plans earlier in the process. Furthermore, the framework
implements a multi-level caching mechanism for inter-
mediate CBO plan results, at the base table, join, and
subquery levels, which eliminates redundant computa-
tions across multiple CBO invocations. In this talk, we
will present our solution and discuss our result.

2 Owur Framework

Our approach is grounded in two key observations:
1) The benefit scenarios for a cost-based rewrite rule

can often be identified using query characteristics and
statistics which are available during the QRW phase with-
out invoking the CBO.

2) Intermediate planning results, including base ta-
ble accesses, joins, and untouched subqueries, are likely
reusable across multiple CBO invocations for the same
query.

During the QRW phase, when evaluating a cost-based
rewrite rule, our method employs an "educated guess"
based on available statistics, table physical properties,
system resource, and query patterns to predict whether
applying the rule will be beneficial. This guess is fast, as
it avoids CBO invocation, and is likely accurate due to
our deep understanding of the rule’s benefit scenarios.
As a safeguard, the CBO still evaluates both scenarios
(applying the rule versus not applying it). However, the
educated guess directs us to first compute the cost of
the more promising alternative and establishes a tight
upper bound that can allow early termination during the
subsequent evaluation of the less promising option. This
upper bound is continuously updated as lower-cost plans
are found.

During the CBO phase, our framework caches plans
for both query blocks and intermediate planning results.
If a query block is unmodified by a rewrite rule, its cached
plan is reused. For altered structures, the system maxi-
mizes reuse by leveraging cached intermediate planning
results at multiple levels of granularity. The details of the
framework, examples and various challenging scenarios
will be elaborated in this presentation.

3 Result

The framework implemented in GaussDB was evaluated
by measuring the compilation time of the 12 TPC-H
queries that trigger cost-based rewrite rules. The re-
sults demonstrate an average improvement of 48% for
cost-based rewrites compilation time. Since GaussDB
currently supports only seven rules, expanding the rule
set should yield even greater performance gains. In sum-
mary, this framework offers a more efficient methodol-
ogy for applying cost-based rewrite rules, thereby signif-
icantly reducing the computational barrier to integrating
a larger number of them into the query optimizer.



