Persistent Memory k-Core Decomposition

Igor Jardim-Martins, Bin Guo

Department of Computing & Information Systems, Trent University, Ontario, Canada
ijardimmartins@trentu.ca; binguo@trentu.ca

Abstract

The k-core, as one of the most well-studied cohesive sub-
graph models, is widely used to identify graph nodes
that are crucial in various applications, including biolog-
ical, social, ecological, and financial networks. Existing
in-memory methods do not scale due to limited DRAM
capacity, disk-based methods suffer from I/O bottlenecks,
and distributed methods have high communication and
synchronization overheads. Persistent memory (PM) is
a cost-effective, high-capacity, and non-volatile mem-
ory with speeds that are only 2 — 3 times slower than
DRAM. However, PM suffers from slow in-place writes
and read/write amplification. We propose a PM-based
k-core decomposition that utilizes DRAM as a buffer to
reduce the number of PM accesses. We conduct extensive
experiments to compare with existing k-core decompo-
sition methods.

1 Introduction

The k-core is the maximal subgraph in which each ver-
tex has a degree of at least k; and the core number of
each vertex is the maximum value of k contained in the
k-core. The k-core decomposition involves computing
the core numbers of all vertices in the graph. The k-core
has many applications, such as identifying critical users
within a network and detecting influential spreaders in
social networks . Several approaches exist for k-core de-
composition, including in-memory, disk-based, and dis-
tributed methods. In-memory approaches cannot process
large data graphs due to the limited DRAM capacity in a
single machine [3]. Disk-based approaches suffer from
an I/O performance bottleneck. Distributed approaches
have a high cost on communication and synchronization,
especially with vertices with high core numbers [1].

Persistent memory (PM) is a developing technology
for non-volatile storage that is only 2 — 3 times slower
than DRAM [4]. This technology is expected to improve
the performance of large-scale data graph processing and
reduce the DRAM usage, thereby solving the problem of
existing methods. However, PM experiences issues with
in-place writes being 7 — 8 times slower than sequential
or random writes [2], as well as read/write amplification
with small accesses.

Many graph algorithms, such as k-core decomposition,

frequently perform small-sized in-place writes, which
can deteriorate their performance on PM and reduce the
hardware’s lifespan more quickly. In this work, we are
the first to propose the PM-based k-core decomposition.
The whole graph is stored on PM, and the k-core de-
composition is performed on PM. DRAM is used as a
buffer to reduce the number of in-place write operations
to achieve high performance. Furthermore, the method-
ology can be applied to other graph algorithms, such as
k-truss decomposition, SCC decomposition, and Tarjan’s
algorithm.

2 Contributions
The contributions are summarized as follows.

« We will explore a PM-based k-core decomposition al-
gorithm, which can handle large graphs on a single ma-
chine. We propose using DRAM as a buffer to reduce
the total reads/writes on PM and to improve perfor-
mance. Additionally, we develop several buffer strate-
gies to support efficient buffer usage.

« We will perform comprehensive experimental analysis
comparing our PM-based approach with state-of-the-
art in-memory, disk-based, and distributed methods.

References

[1] Bin Guo and Runze Zhao. Experimental evaluation
of distributed k-core decomposition. arXiv preprint
arXiv:2406.17580, 2024.

[2] Abdullah Al Ragibul Islam and Dong Dai. Dgap:
Efficient dynamic graph analysis on persistent mem-
ory. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1-13, 2023.

[3] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li,
and Yinlong Xu. Xpgraph: Xpline-friendly persistent
memory graph stores for large-scale evolving graphs.
In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1308—1325. IEEE,
2022.

[4] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent mem-
ory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 169-182, 2020.



