
Sphinx: A Succinct Perfect Hash Index for x86

Sajad Faghfoor Maghrebi
smaghrebi@cs.toronto.edu

Niv Dayan
nivdayan@cs.toronto.edu

Computer Science
University of Toronto

Motivation
Modern log-structured key-value stores rely on in-
memory indexes to map keys to their storage locations.
Fingerprint-based indexes reduce memory usage by stor-
ing a small hash-digest of the keys, but as they shrink
further, their shorter fingerprints sharply increase the
false-positive rate, triggering excess I/Os [1]. Dynamic
perfect hash tables eliminate false positives, but their
compact bit-stream is hard to encode and decode, which
results in higher latency [2]. This creates a tension be-
tween memory efficiency and low latency on commodity
hardware, leading prior work to adopt FPGAs and ASICs
tomitigate these limitations at the cost of more expensive
hardware [2].

Overview
In this presentation, we introduce Sphinx [3], a dynamic,
succinct perfect hash table engineered for x86. Sphinx
distinguishes all present keys without storing them by
cleverly maintaining an index of approximately 4 bits
per entry and sustains low latency, almost as fast as a
single cache miss per query.
Sphinx achieves memory efficiency and fast processing
through the following carefully designed techniques:
(i) Sphinx consists of 256-bit blocks. The layout of each
block is structured in such a way that it can be parsed
using modern CPU bit manipulation instructions1, elimi-
nating the need for inefficient bit-by-bit traversal. (ii) A
small, cache-resident Decoder is used to handle common
patterns among the slots encountered during traversal
through table lookups. (iii) Instead of relying on pointer
chains, which tend to increase cache misses, Sphinx uses
near-blocks for cases where a block cannot handle all of
its assigned entries. (iv) Expansion is handled smoothly
and incrementally by grouping blocks together and ex-
panding them one at a time, rather than resizing the
entire structure at once.
Sphinx uses rank and select optimized for modern CPUs
to traverse the blocks. The rank(b, i) command counts

1Advanced Bit Manipulation Instructions (BMI1 and BMI2), such
as PEXT, POPCNT, TZCNT, etc.

the number of set bits (1s) from the start of Bitmap 𝑏 up
to and excluding Index 𝑖 . The select(b, i) command finds
the offset of the 𝑖th set bit in Bitmap 𝑏.
Sphinx then creates the block structure to be rank/select
friendly. In other words, within a block, the number of
set bits to pass before reaching the target slot is carefully
designed to be predictable. Using rank and select, we
can skip over irrelevant slots and jump directly to the
one of interest in constant time. The selected slot is then
decoded by the cache-resident Decoder in about 98% of
cases, minimizing bit-level parsing and keeping the hot
path entirely in L1 cache.

Results
We compare Sphinx to the best alternatives and show
that it leads to a 2x reduction in query latency, update
latency, and memory footprint.

References
[1] B. Chandramouli, G. Prasaad, D. Kossmann, J. J.

Levandoski, J. Hunter, and M. F. Barnett. Faster:
A concurrent key-value store with in-place updates.
In Proceedings of the 2018 International Conference
on Management of Data (SIGMOD), pages 275–290,
2018.

[2] N. Dayan, M. Twitto, Y. Rochman, U. Beitler, I. B.
Zion, E. Bortnikov, S. Dashevsky, O. Frishman,
E. Ginzburg, I. Maly, A. P. Meir, M. Mokryn, I. Naiss,
and N. Rabinovich. The end of moore’s law and
the rise of the data processor. Proc. VLDB Endow.,
14(12):2932–2944, jul 2021.

[3] S. F. Maghrebi and N. Dayan. Sphinx: A succinct
perfect hash index for x86. Proc. VLDB Endow.,
18(11):4424–4437, Sept. 2025.


