Simplified MCAS by Improving Memory Reclamation

Syed All Rahi Zarif, Bin Guo

Department of Computer Science, Trent University, Ontario, Canada
syedallrahizarif@trentu.ca, binguo@trentu.ca

1 Introduction

Compare-and-swap (CAS) is a widely used atomic prim-
itive in concurrent programming. It works on a single
memory word and writes a new value only when the
current value matches the expected one. Multi-word
compare-and-swap (MCAS) is an extension of CAS that
atomically updates several memory locations. It guaran-
tees that either all updates take place or none do. This is
useful for building complex concurrent data structures.
For example, MCAS simplifies the design of lock-free struc-
tures such as linked lists or Union-Find, where multiple
pointers or values must be updated consistently. With-
out MCAS, programmers rely on complicated techniques
or transactional memory, which increases both design
complexity and execution cost.

Much work has been done in this area. The CASN
algorithm of Harris et al. [2] and the volatile PMwCAS
algorithm of Wang et al. [4] both require about 3k + 1
CAS operations for a k-word update. They also depend
on descriptors and garbage collection (GC), which adds
extra cost. The AOPT algorithm of Guerraoui et al. [1]
improved this by showing that only k + 1 CAS are needed
in the uncontended case. AOPT achieved this by delay-
ing the memory cleanup process. One major problem
that remains inadequately solved is memory cleanup.
Current approaches in AOPT delay cleanup and rely on
epoch-based or lazy reclamation. This increases code
complexity and slows down reads, because memory lo-
cations may continue to point to descriptors for some
time. Sugiura and Ishikawa [3] showed that garbage col-
lection itself is a major bottleneck. They built a GC-free
design that gave higher throughput. However, they used
spinlocks, and the algorithm is no longer lock-free.

In this work, we focus on this memory management
problem in the MCAS operations. We propose a memory
cleanup mechanism that can automatically reclaim the
memory when the MCAS operations are finished, which
prepares for the next round of MCAS operations. Our
method ensures the use of k + 1 CAS operations, and
provides efficient memory cleanup. Furthermore, we will
apply our approach to many lock-free data structures,
e.g., double-linked list, union-find, which achieve high
performance. In addition, we will build open-source
libraries for the MCAS.

2 Contributions
In this work, our contributions are summarized as fol-
lows.

1. We plan to design an optimized memory management
mechanism that can efficiently release and recycle
memory, thereby reducing the system overhead.

2. We plan to develop a user-friendly open source li-
brary to apply the improved method to existing data
structures and algorithms.

3. We plan to extend the improved MCAS to more com-
plex data structures and study its performance. As
a case study, we aim to apply it to the Union-Find
data structure, which is fundamental for many paral-
lel graph algorithms, e.g., parallel SCC decomposition
and Minimum Spanning Tree.

4. We plan to conduct experiments and evaluate whether
the improved MCAS can achieve better performance
compared to existing approaches.

References

[1] Rachid Guerraoui, Alex Kogan, Virendra J.
Marathe, and Igor Zablotchi. Efficient multi-
word compare-and-swap. In Proceedings
of the 34th International Symposium on Dis-
tributed Computing (DISC), pages 4:1-4:19,
2020. https://doi.org/10.4230/LIPIcs.DISC.2020.4
doi:10.4230/LIPIcs.DISC.2020.4.

[2] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A
practical multi-word compare-and-swap operation.
In Proceedings of the 16th International Conference on
Distributed Computing (DISC), pages 265-279, 2002.

[3] Kento Sugiura and Yoshiharu Ishikawa. Implemen-
tation of a multi-word compare-and-swap opera-
tion without garbage collection. IEICE Transac-
tions on Information and Systems, E105-D(5):946-954,
2022. https://doi.org/10.1587/transinf.2021DAP0011
doi:10.1587/transinf.2021DAPQQ11.

[4] Tianzheng Wang, Justin Levandoski, and Per-
Ake Larson. Easy lock-free indexing in non-volatile
memory. In Proceedings of the 34th IEEE International
Conference on Data Engineering (ICDE), pages 461—
472, 2018. https://doi.org/10.1109/ICDE.2018.00049
doi:10.1109/ICDE.2018.00049.

