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Abstract
Understanding how databases handle different workloads is 
essential for modern data-driven systems. This project evaluates 
three storage models—row-store SQL, column-store SQL, and 
MongoDB—to see how their structures affect performance.
What we tested
• Transactional tasks (OLTP): read/write operations, joins
• Analytical tasks (OLAP): scans, filters, aggregations
• Pattern mining using the Apriori algorithm
• Flexibility during migration to MongoDB
Key findings
• Row stores handle transaction-heavy operations most 

efficiently.
• Column stores deliver faster analytical processing.
• MongoDB scales best when workloads mix or grow.
• Overall, the results show that data organization has a direct 

impact on performance and that each model excels under 
different conditions.

Overall, the results show that data organization has a direct 
impact on performance and that each model excels under 
different conditions.

Introduction

Modern data systems must support two competing demands: 
fast transactions and rich analytical processing.
Workload types
• OLTP (Online Transaction Processing) handles frequent, 

real-time inserts, updates, and lookups.
• OLAP (Online Analytical Processing) supports large-scale 

filtering, scanning, and aggregation for data insights.
Our approach 
To examine this trade-off, we built a University Database 
System using both SQL and NoSQL architectures and evaluated 
how each responds to different workload types.
What this study shows 
Database architecture has a direct impact on query 
performance, scalability, and pattern-mining consistency 
across diverse data operations.
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Related Work
Research on database performance has explored how different 
storage models and architectures impact query speed, scalability, 
and analytics.
Key themes in prior studies
• Comparisons of row-store vs. column-store efficiency
• Use of Apriori and related algorithms for pattern mining
• Evaluation of NoSQL systems for scalability and flexible schema 

design
Motivation
These works highlight gaps between relational and non-relational 
approaches, inspiring our comparison of SQL (row + column) and 
MongoDB models in both performance and pattern discovery.

Research Work Focus / Contribution Limitation

Abadi et al., 2008 (ACM 
SIGMOD)

Row vs. column store 
comparison Limited to analytical queries

Agrawal & Srikant, 1994 
(VLDB)

Frequent pattern mining using 
Apriori Computationally expensive

Shahnawaz et al., 2025 (ACM 
Surveys)

Big data analytics & NoSQL 
overview Lacked migration testing

Methodology
We evaluated SQL and NoSQL systems using a controlled 
benchmarking environment and a shared university schema.
Schema Design and Storage Models
University Information System schema implemented in three 
forms:
• Row-Oriented MySQL (univ_row) — traditional relational 

layout
• Column-Oriented MySQL (univ_col) — decomposed attribute 

tables
• MongoDB — collections 
 mirroring relational 
 entities
Purpose
Compare how storage format 
impacts access speed and query 
execution.

Pattern Mining (Apriori Algorithm)
Process summary:
• Enrollment data exported to CSV
• Preprocessed using Pandas + MLXtend
• Frequent itemsets + association rules evaluated
• Ensured pattern consistency across all models

OLTP vs OLAP Benchmarking — Comparison Table
Aspect

OLTP Benchmarking 
(Transactional Workload)

OLAP Benchmarking (Analytical 
Workload)

Purpose
Simulates real-time operations and 

frequent transactions

Evaluates analytical query 
performance and large-scale data 

processing

Typical Queries
Multiple SELECT and INSERT on 

student records
Aggregations such as “Average 

instructor salary per department”

Focus Area
Measures execution time for 

simple transactions
Measures speed of complex 

analytical computations
Performance Factors 

Observed
I/O overhead, commit latency, row 

access speed
Aggregation efficiency, scan 

performance, computation time

MySQL Behavior
Good for rapid row-level 
operations; lower latency

Slower for large aggregations due 
to row-based layout

MongoDB / Column 
Store Behavior

Higher I/O overhead for frequent 
commits

More efficient for analytical tasks 
due to vertical alignment

Best Use Case
Real-time systems: student 

records, transactions
Reporting, dashboards, 
departmental analytics

Results
Our benchmark tests revealed clear differences in how each 
database model handled transactional and analytical workloads.
OLTP (Transactional Performance)
• Row-Oriented MySQL showed the fastest read/write speeds 

due to contiguous row storage.
• Column-Oriented MySQL and MongoDB were slower for 

frequent, small transactions.
OLAP (Analytical Performance)
• Column-Oriented MySQL outperformed all models on scan-

heavy aggregation queries.
• Row-Oriented MySQL was less efficient for large analytical 

tasks due to row-based alignment.
MongoDB Behavior
• Delivered moderate performance on both workloads.
• Provided superior scalability, schema flexibility, and 

adaptability for semi-structured data.
Overall Trend
SQL systems showed more predictable execution times, while 
MongoDB offered greater elasticity for larger, mixed, or evolving 
datasets.

Conclusion
This study shows that database performance is strongly shaped 
by how data is organized and accessed.
Key takeaways
• Row-oriented SQL systems are best suited for OLTP 

workloads that rely on fast, frequent reads and writes.
• Column-oriented SQL systems excel in OLAP scenarios by 

optimizing scans and aggregations.
• MongoDB provides flexible, scalable handling of semi-

structured or rapidly evolving data.
Overall insight
No single database model is universally optimal — selecting the 
right architecture depends on the workload’s query profile and 
data structure.
Future directions
We plan to extend this work by evaluating:
• distributed and cloud-scale deployments
• real-time analytical processing
• hybrid SQL–NoSQL integration strategies
These next steps aim to refine adaptive database design for 
large-scale systems.
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