
Performance, Patterns, and Path from SQL to NoSQL
Meet Solanki (solank94@uwindsor.ca), Dr. Christie Ezeife (cezeife@uwindsor.ca) and Yusriyah Rahman (rahman4n@uwindsor.ca)

School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada

Abstract
Understanding how databases handle different workloads is
essential for modern data-driven systems. This project evaluates
three storage models—row-store SQL, column-store SQL, and
MongoDB—to see how their structures affect performance.
What we tested
• Transactional tasks (OLTP): read/write operations, joins
• Analytical tasks (OLAP): scans, filters, aggregations
• Pattern mining using the Apriori algorithm
• Flexibility during migration to MongoDB
Key findings
• Row stores handle transaction-heavy operations most

efficiently.
• Column stores deliver faster analytical processing.
• MongoDB scales best when workloads mix or grow.
• Overall, the results show that data organization has a direct

impact on performance and that each model excels under
different conditions.

Overall, the results show that data organization has a direct
impact on performance and that each model excels under
different conditions.

Introduction

Modern data systems must support two competing demands:
fast transactions and rich analytical processing.
Workload types
• OLTP (Online Transaction Processing) handles frequent,

real-time inserts, updates, and lookups.
• OLAP (Online Analytical Processing) supports large-scale

filtering, scanning, and aggregation for data insights.
Our approach
To examine this trade-off, we built a University Database
System using both SQL and NoSQL architectures and evaluated
how each responds to different workload types.
What this study shows
Database architecture has a direct impact on query
performance, scalability, and pattern-mining consistency
across diverse data operations.

Row Store Column
Store

Apriori
Algorithm MongoDB

Related Work
Research on database performance has explored how different
storage models and architectures impact query speed, scalability,
and analytics.
Key themes in prior studies
• Comparisons of row-store vs. column-store efficiency
• Use of Apriori and related algorithms for pattern mining
• Evaluation of NoSQL systems for scalability and flexible schema

design
Motivation
These works highlight gaps between relational and non-relational
approaches, inspiring our comparison of SQL (row + column) and
MongoDB models in both performance and pattern discovery.

Research Work Focus / Contribution Limitation

Abadi et al., 2008 (ACM
SIGMOD)

Row vs. column store
comparison Limited to analytical queries

Agrawal & Srikant, 1994
(VLDB)

Frequent pattern mining using
Apriori Computationally expensive

Shahnawaz et al., 2025 (ACM
Surveys)

Big data analytics & NoSQL
overview Lacked migration testing

Methodology
We evaluated SQL and NoSQL systems using a controlled
benchmarking environment and a shared university schema.
Schema Design and Storage Models
University Information System schema implemented in three
forms:
• Row-Oriented MySQL (univ_row) — traditional relational

layout
• Column-Oriented MySQL (univ_col) — decomposed attribute

tables
• MongoDB — collections
 mirroring relational
 entities
Purpose
Compare how storage format
impacts access speed and query
execution.

Pattern Mining (Apriori Algorithm)
Process summary:
• Enrollment data exported to CSV
• Preprocessed using Pandas + MLXtend
• Frequent itemsets + association rules evaluated
• Ensured pattern consistency across all models

OLTP vs OLAP Benchmarking — Comparison Table
Aspect

OLTP Benchmarking
(Transactional Workload)

OLAP Benchmarking (Analytical
Workload)

Purpose
Simulates real-time operations and

frequent transactions

Evaluates analytical query
performance and large-scale data

processing

Typical Queries
Multiple SELECT and INSERT on

student records
Aggregations such as “Average

instructor salary per department”

Focus Area
Measures execution time for

simple transactions
Measures speed of complex

analytical computations
Performance Factors

Observed
I/O overhead, commit latency, row

access speed
Aggregation efficiency, scan

performance, computation time

MySQL Behavior
Good for rapid row-level
operations; lower latency

Slower for large aggregations due
to row-based layout

MongoDB / Column
Store Behavior

Higher I/O overhead for frequent
commits

More efficient for analytical tasks
due to vertical alignment

Best Use Case
Real-time systems: student

records, transactions
Reporting, dashboards,
departmental analytics

Results
Our benchmark tests revealed clear differences in how each
database model handled transactional and analytical workloads.
OLTP (Transactional Performance)
• Row-Oriented MySQL showed the fastest read/write speeds

due to contiguous row storage.
• Column-Oriented MySQL and MongoDB were slower for

frequent, small transactions.
OLAP (Analytical Performance)
• Column-Oriented MySQL outperformed all models on scan-

heavy aggregation queries.
• Row-Oriented MySQL was less efficient for large analytical

tasks due to row-based alignment.
MongoDB Behavior
• Delivered moderate performance on both workloads.
• Provided superior scalability, schema flexibility, and

adaptability for semi-structured data.
Overall Trend
SQL systems showed more predictable execution times, while
MongoDB offered greater elasticity for larger, mixed, or evolving
datasets.

Conclusion
This study shows that database performance is strongly shaped
by how data is organized and accessed.
Key takeaways
• Row-oriented SQL systems are best suited for OLTP

workloads that rely on fast, frequent reads and writes.
• Column-oriented SQL systems excel in OLAP scenarios by

optimizing scans and aggregations.
• MongoDB provides flexible, scalable handling of semi-

structured or rapidly evolving data.
Overall insight
No single database model is universally optimal — selecting the
right architecture depends on the workload’s query profile and
data structure.
Future directions
We plan to extend this work by evaluating:
• distributed and cloud-scale deployments
• real-time analytical processing
• hybrid SQL–NoSQL integration strategies
These next steps aim to refine adaptive database design for
large-scale systems.

mailto:solank94@uwindsor.ca
mailto:cezeife@uwindsor.ca
mailto:rahman4n@uwindsor.ca

