
Performance, Patterns, and Path from SQL to NoSQL
Meet Solanki, Christie I. Ezeife and Yusriyah Rahman

School of Computer Science
University of Windsor
solank94@uwindsor.ca

1 Introduction
This rapid expansion of data-driven systems demands, databases
that efficiently support both the transactional and analytical work-
loads. Traditional row-oriented relational whereas databases do
well with Online Transaction Processing. OLTP but always perform
poorly in Online Analytical Processing for OLAP-scenarios common
in Big Data environments. However, column-oriented and NoSQL
databases address these challenges by optimizing data storage for an-
alytical speed and scalability. This paper compares these paradigms
by developing two university database models one row-oriented
and one column-oriented followed by the application of the Apriori
algorithm for pattern mining and the migration of both relational
schemas to MongoDB to assess performance consistency and data
structure flexibility.

2 Methodology
A four-step approach was adopted to evaluate relational and non-
relational databases in terms of schema design, query optimization,
and analytical capabilities.

2.1 Relational Database Design (Row vs. Column).

Figure 1: Logical schema of the row-oriented relational database (univ_row).

Two MySQL databases univ_row (row-oriented) and univ_col
(column-oriented) were implemented to model a university system.
Figure 1 illustrates the logical schema of the row-oriented database
consisting of 12 interrelated entities (students, courses, instructors,
etc.) connected through foreign keys. The column-oriented version
was created from the same schema by storing data attribute-wise
instead of row-wise. Each attribute from the row database was
stored as a separate table along with its primary key, allowing faster
access to specific columns for analytical queries while increasing
the cost of joins when reconstructing complete rows.

2.2 Query Optimization.

Figure 2: Row-oriented optimization
using indexing on join/filter columns.

Figure 3: Column-oriented optimiza-
tion using predicate pushdown (filter-
before-join).

To enhance performance, the row-oriented database applied in-
dexing, while the column-oriented model employed a filter-before-
join technique (predicate pushdown). The first query demonstrates
the use of indexing on frequently joined or filtered columns such as
department_id, while the second illustrates predicate pushdown

to minimize intermediate results and enhance columnar query effi-
ciency.

2.3 Data Mining using Apriori Algorithm. A transactional
dataset of student-course enrollments was exported to CSV and
analyzed using Python’s mlxtend library. The Apriori algorithm
generated frequent itemsets and association rules such as “students
taking course A also took course B,” confirming consistent results
across both relational schemas.

2.4 Migration to NoSQL (MongoDB). Both relational schemas
were migrated into MongoDB using mongoimport and explored
in MongoDB Compass. The migration preserved logical relation-
ships through embedded and referenced documents, demonstrating
schema flexibility and scalability in a document-oriented system.

3 Conclusion

Figure 4: Query execution time compar-
ison across database models.

Figure 5: Top multi-course combina-
tions using Apriori algorithm.

These tests results in clear differences between relational and non-
relational databases. The row-based db model (univ_row) exe-
cuted join and transaction operations faster, taking approximately
0.18–0.25 seconds per operation on average. In contrast, the
column-based db model (univ_col) was up to 45% faster for ag-
gregation and analytics operations. Later on, adding indexes, the
univ_row model improved performance by about 20–40%, which
confirmed the value of indexing in relational performance.
The Apriori algorithm identified frequent courses combinations

of both databases, and found over 30 patterns with a minimum
support of 0.2 and with confidence higher than 0.7. Migration
to MongoDB effectively preserved all 12 entities and their inter-
relationships, validating that relational data can be transformed into
a document model without losing structure.

Overall, the study reveals row-oriented databases are optimized
for OLTP activities, while column-oriented and NoSQL ones are
optimized for OLAP and analytics workloads. Utilizing the Apri-
ori algorithm and MongoDB once more demonstrated consistency
in pattern mining and flexibility in non-relational storage.

References
[1] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 7th ed.,
Pearson, 2016.
[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” VLDB, 1994, pp. 487–499.
[3] MongoDB Inc., “MongoDB Documentation,” 2024, https://www.
mongodb.com/docs/.
[4] M. Shahnawaz et al., “A Comprehensive Survey on Big Data Analytics:
Characteristics, Tools, and Techniques,” ACM Computing Surveys, 2025.
[5] D. Abadi et al., “Column-Stores vs. Row-Stores: How Different Are They
Really?,” ACM SIGMOD, 2008, pp. 967–980.


