Experiences with Building, Querying and Mining NoSQL Column
Wide Databases

Yusriyah Rahman, Meet Solanki, and Christie I. Ezeife

School of Computer Science, University of Windsor
401 Sunset Avenue, Windsor, ON N9B3P4, Canada

1 Row Wise to Column Wide

Figure 1 and 2 display the database which records data
about students enrolled in courses and their grades. The
row wise schema in Figure 1 has 3 entities, while the
column wide schema in Figure 2 expands to 11, making
it almost 4 times larger, since it consists of 8 additional
entities. Each attribute was separated into its own entity
linked through primary and foreign keys. An additional
entity, TakesID, introduced a unique primary key (tid),
resulting in one more entity than the total number of
original attributes. The implementation of the tid pri-
mary key resulted in the column wide schema to consist
of 11 attributes instead of 10 as in the row wise schema.

StudentlD(sid)

StudentMName(sid, sname)
Student (sid, Sname, Major, Class) — Seemvmorcs meror
StudentClass(sid, class)
CourselD(cid)
CourseTitle(cid, ctitle)
CourseHour(cid, erhr)
TakesID(tid)
TakesStudentlD(tid, sid)
TakesCourselD(tid, cid)
TakesGrade(tid, grade)

Course (cid, ctitle, e
Takes (sid, cid, grade)

Fig. 1. Row wise schema Fig. 2. Column wide schema

2 Query Performance Analysis

Figures 3 and 4 are row and column wide queries respec-
tively. They display student’s IDs and their correspond-
ing cumulative averages using the row wise and column
wide schemata, respectively according to the figures.

SELECT sid, AVG(grade) SELECT TS.sid, AVG(TG.grade)
FROM TakesStudentID TS

FROM Takes

JOIN TakesGrade TG ON TS.tid = TG.tid

GROUPEVgSdS GROUP BY TS.sid;

Fig. 3. Row wise query Fig. 4. Column wide query

The row wise query fetches entire tuple and attributes.
Here for example, the query reads the Takes table and
fetches all attributes sid, cid, and grade even though
only sid and grade are required, resulting in Takes to be
scanned tuple by tuple. This increases computation time
(CPU decoding overhead) to 1.20 seconds for example

with 1,000,000 rows of 1KB each. Column wide queries
however fetch only query related attributes, which are
sid and grade in this case. This makes the column wide
database optimal as it reduces memory usage, disk input
and output, and computation time, like to 0.43 seconds
for our instance. Therefore, the column wide database
executes this query about 0.77 seconds or 64% faster.

3 Applying the Apriori Algorithm

The Apriori Algorithm can be applied to the transactional
dataset in Table 1 generated from the row wise or column
wide schemata in Figure 1 or 2, respectively. Since Figure
1 and Figure 2 consist of the same data, when the Apriori
algorithm is applied to them, they yield identical results.

sid | Courses Taken ?em set } Support
Comp1400 2/2 = 100%

1 | {Comp1400, Math1720} {Math1720} V2 - 100%
2 | {Comp1400} {Comp1400, Math1720} | 1/2 = 50%

Table 1. Transactional Dataset Table 2. Item set Supports

Rule Confidence
Comp1400 — Math1720 1/2 = 50%
Math1720 — Comp1400 1/1 =100%

Table 3. Association Rules and Confidence Levels

If the minimum support threshold is 50%, then all item
sets are frequent, as shown in Table 2 with support levels.
From the item set "{Comp1400, Math1720}" the rules “50%
of students who took Comp1400 also took Math1720” and
“all students who took Math1720 also took Comp1400”
may be derived as shown in Table 3 along with their
respective confidence levels determining the rules.

References

1. Elmasri, R., Navathe, S.B.: Fundamentals of Database
Systems, 7th edn. Pearson Education, Boston (2016).

2. Shahnawaz, M., Kumar, M.: A comprehensive sur-
vey on big data analytics: characteristics, tools and
techniques. ACM Computing Surveys 57(8), Article
196 (2025). https://doi.org/10.1145/3718364

