Enabling new database services with a disaggregated storage

Chong Chen, Alex Depoutovitch

Huawei Research Canada
chongchen@huawei.com, alex.depoutovitch@huawei.com

1 Introduction

In modern-day cloud databases, the core database en-
gine is an important but relatively small component. A
lot of effort goes into creating infrastructure services
around it. Examples of such services include continu-
ous backup and fast or even instantaneous restore of
terabyte-scale databases, nearly zero-time recovery with
zero data loss after region-scale disasters, and instan-
taneous scalability in the face of changing workloads.
Services may also include “time travel” - instantaneous
rewind of a database to any point in the past, support of
data replication to multiple geo-distributed zones, and
others. These features are often as important as core
database engine. Decoupled compute and storage, which
is a de facto standard in cloud-native databases, opens
many new possibilities for designing such services. In
this talk, we first present a novel decoupled, append-
only intelligent storage architecture that enables all of
the above features in a uniform way. Next, we show
how this architecture enables horizontal scalability, load
balancing, instantaneous restore and time-travel. We
discuss the technical challenges and explain how we de-
signed the system and technology to overcome them.
The described architecture is currently implemented in
Taurus (GaussDB for MySQL) cloud-native database and
used by thousands of customers worldwide.

2 Horizontal scalability

Horizontal scalability is often achieved by adding more
read replica nodes to serve reads and master nodes to
serve write workloads. Disaggregated storage shared
between nodes allows nearly instantaneous creation of
read replicas and masters. However, read replicas must
retrieve and replay logs from the master to keep buffer
pools in sync. This log replay process results in a time
delay known as read replica lag. We present a new log de-
livery and replay architecture aimed at reducing this lag
to a single-digit millisecond level without the overheads
of synchronous replication. Our disaggregated storage
layer serves as a delivery mechanism for logs and pro-
vides multi-version reads for pages. In our architecture,
read replicas don’t put additional loads on the master,

allowing nearly unlimited read query scalability.

Another way to achieve horizontal scalability is to
have a multi-master architecture. However, from our
previous multi-master implementation, we have found
that a generic multi-master implementation brings a lot
of complexity and synchronization overhead. We have
also found that the majority of customers who require
multi-master architecture for scalability reasons have
naturally partitioned workloads and use multi-master
clusters for scaling and load-balancing. Many of them are
SaaS (Software As A Service) providers who deploy and
manage a fleet of database instances to support a large
number of tenants. Our decoupled compute and storage
architecture is based on a stateless compute layer, disag-
gregated storage, and a proxy system. We show how it
allows SaaS providers to nearly instantaneously migrate
tenant logical databases for load balancing, remove and
add new servers for scalability with a negligible business
interruption.

3 Robust restore

Synchronous data replication protects data from most
hardware failures. However, it does not protect against
user and application errors. The amount of data stored
in a database can be very large; for example, Taurus
currently supports 128TB, and there is a demand for
increasing it even further. Even with state-of-the-art
hardware, it can take many hours or even days to restore
the database from a backup in full. Our disaggregated
storage layer allowed us to implement an on-demand re-
store service, which makes the database available during
restore very quickly, independent of database size, by
loading the working set of the database first and then
loading the rest of the database in the background. We
are going to present the overall architecture of this ap-
proach and the challenges we have experienced.

Finally, we are going to present how our append-only
disaggregated storage layer enabled us to implement
fast time-travel for a database. With this feature, recent
database modifications can be quickly rewound, inde-
pendent of database size, allowing for quick fixes of user
errors.



