DDS: DPU-optimized Disaggregated Storage

Jiasheng Hu

Department of Computer Science

University of Toronto
jasonhu@cs. toronto.edu

1 Background & Challenges

A defining feature of cloud data systems is the disaggre-
gation of storage and computation. In this architecture,
application workloads execute on compute servers, while
data is stored on dedicated storage servers that manage
storage hardware and service storage requests via the
network. However, existing approaches are incomplete
solutions: (1) they dedicate CPU cores to issue requests
and poll completions, and thus still suffer from high CPU
cost; and (2) they do not reduce the overhead of network
and storage routines within data systems, DPUs are SoC-
based programmable NICs that are designed to offload
host functionality. We characterize them as having these
five components: High-speed network interface, power-
efficient CPU cores, on-board memory, built-in hardware
accelerators, and PCle support.

DPU opportunities: It is possible to build an ultra
efficient engine on the DPU that offloads arbitrary I/O
operations, thereby saving host CPU cycles. DPU limita-
tions: DPUs suffer from several constraints that prevent
them from replacing the host servers in the design of
cloud data systems. They have weaker and fewer cores
than the host; they often have insufficient memory for
data systems when serving large-scale workloads, which
can lead to considerable slowdown for workloads such
as page updates.

2 DDS Overview

D Original storage server
component
(O oos component

— Y DDS component that Non-blocking
I does not burn CPUs file /1O

(o S
TCP/IP :G’,’gﬂp ll | File Library

L —]

)

Disaggregated Storage (e.g., DB, KV) l

<4 Network path
<> Storage path

DMA
v

File
-~

File Service

Direct
access

> SSDs

A
A \V4

User-defined
Offload Offload | Cache | [JSIUSEEE
¢ g | Predicate Function | Table | i e

Offload Engine

Compute Server

Traffic Director

Figure 1: DDS architecture.
DDS therefore seeks to bridge the gap between the

resource requirements of data system storage servers
and the characteristics of DPUs with partial offloading.
Our specific goals are: Minimal storage cost and latency,
ease of adoption, and generality, shown in Figure 1. To
this end, DDS introduces a storage path unifies the ap-
plication’s file operations on the host and those that are
offloaded to the DPU. A network path then directs traffic
between the host and the DPU to enable partial offload-
ing. An offload engine supports customizable offloading
of storage functions to harness the capability enabled by
the storage and network paths, which takes as input a
remote storage request from the traffic director, outputs
a file read operation, and directly submits it to the DPU
file service. This process is guided by a user-supplied
offload function. When data is read, it responds to the
client via the traffic director.

3 Evaluation

We evaluate DDS to find its CPU savings and latency
reduction. We implement a storage-disaggregated appli-
cation, and integrate DDS with production systems.

For reads, a storage-disaggregated application benefits
from DDS by performing file I/O with its front-end li-
brary to replace the OS file system, which brings a notice-
able CPU reduction—the baseline consumes 10.7 cores
to achieve 390K IOPS, but achieves 580 K IOPS using
only 6.5 cores with DDS offloading. We show that DPU
offloading effectively eliminates host CPU consumption
as DDS can drive a sufficiently high read throughput.

Directly offloading reads to the DPU further decreases
latency by avoiding the roundtrip to the host and its
associated overhead. When all of the host overhead is
bypassed with DDS offloading, the latency of read requests
is improved by an order of magnitude. Specifically, the
latency of the baseline achieving 390K IOPS is 11 ms,
while DDS incurs only 780 s when achieving 730 K IOPS.
Integration with SQL Hyperscale, a cloud-native DBMS,
and FASTER, a KV-Store, also shows orders of magnitude
latency reduction. This comes with the additional benefit
of zero host CPU involvement, saving tens of CPU cores
on the host.

