
Asymmetric Linearizable Local Reads

Myles Thiessen

Department of Computer Science
University of Toronto

mthiessen@cs.toronto.edu

1 Introduction

Linearizability is the gold standard for distributed
databases because it creates the illusion that the database
is run on a single machine that performs client operations
one at a time. To provide linearizability, databases use a
state machine replication algorithm such as Paxos or Raft.
These algorithms totally order all client operations by
electing a distinguished process known as the leader to
assign each operation a unique index number. They also
ensure that the database remains available despite pro-
cess crashes by replicating each operation acrossmultiple
followers, i.e., processes other than the leader.

To improve the performance of these algorithms many
production databases do not replicate read operations [1].
Instead, each read operation is forwarded to the leader
who performs it immediately against its local copy of
the database. While this is faster than replicating it, read
operation latency can still be as high as a few hundred
milliseconds in geo-distributed networks.
To further reduce read operation latency in geo-

distributed networks, many algorithms have been pro-
posed that enable all processes to perform read oper-
ations locally: in the best case, each process executes
read operations immediately against its local copy of
the database [2, 3, 5, 4]. This is a significant improve-
ment compared to performing all read operations at the
leader because no inter-process communication is re-
quired. However, in the presence of concurrent read-
modify-write operations, processes may block read op-
erations for some time. This is to ensure that processes
are never performing read operations against different
versions of the database simultaneously. Clearly, it is
desirable to minimize the worst-case read blockage time.

2 Presentation Outline

In this presentation, we will first show that with all exist-
ing algorithms when deployed on commodity hardware,
the worst-case read blockage time at every follower is
approximately the network’s diameter in terms of the
maximum message delay between any two processes.
We will then show that the worst-case read blockage

time can be smaller than the network’s diameter at well-
located followers, i.e., those that are close to the leader or
those that are close to the network’s center. We do so by
presenting two algorithms named Pairwise-Leader (PL)
and Pairwise-All (PA): with PL, the worst-case read block-
age time at a process is approximately the round-trip
message delay between it and the leader; with PA, the
worst-case read blockage time at a process is approxi-
mately its eccentricity, i.e., the maximum message delay
between it and all other processes.

To illustrate the above, consider a simple three-region
AWS deployment spanning the Montreal (M), North Vir-
ginia (NV), and North California (NC) regions where
the leader is located in Montreal. The diameter of this
network is 40 ms and so, with all existing algorithms,
the worst-case read blockage time at both NV and NC is
40 ms. In contrast, with PL, the worst-case read block-
age time is 16 ms at NV and 80 ms at NC, because the
round-trip message delays from NV and NC to the leader
located in M are 16 ms and 80 ms, respectively. With PA,
the worst-case read blockage time is 32 ms at NV and
40 ms at NC since these are the eccentricities of NV and
NC, respectively. This simple example showcases the
fundamental difference between existing algorithms and
our Pairwise algorithms: while existing algorithms do not
leverage network asymmetry, our Pairwise algorithms do.

References
[1] Chandra et al. Paxos made live: an engineering

perspective. In PODC, 2007.

[2] Chandra et al. An algorithm for replicated objects
with efficient reads. In PODC, 2016.

[3] Katsarakis et al. Hermes: A fast, fault-tolerant and
linearizable replication protocol. In ASPLOS, 2020.

[4] Moraru et al. Paxos quorum leases: Fast reads with-
out sacrificing writes. In SOCC, 2014.

[5] VanBenschoten et al. Enabling the next generation
of multi-region applications with cockroachdb. In
SIGMOD, 2022.


