
Multiquery Optimization for Declarative Compilers
Darshana Balakrishnan
darshbal@amazon.com

Amazon
Toronto, Canada

Oliver Kennedy
okennedy@buffalo.edu
University at Buffalo
Buffalo, NY, USA

Lukasz Ziarek
lziarek@buffalo.edu
University at Buffalo
Buffalo, NY, USA

Johannes Luong
jluong@amazon.de

Amazon
Berlin, Germany

Hinnerk Gildhoff
hinnerk@amazon.de

Amazon
Berlin, Germany

Gaurav Saxena
gssaxena@amazon.com

Amazon
California, USA

1 Introduction
Program analyses grapple with exceedingly large state spaces, a
struggle that has historically required breaking down high-level
analyses into smaller, manageable chunks (e.g., separate compila-
tion units and limited context-sensitivity). Unfortunately, such a
granular analysis methodology can prohibit the idiomatic expres-
sion of useful analyses, and the resulting loss of precision limits
optimizations. For example Rust’s borrow checker can add minutes
to compilation times, and at the scale of the Linux Kernel, non-
trivial cross-module optimizations are simply not possible. In this
talk, we will outline our initial efforts to create a compiler capa-
ble of scalable, orders-of-magnitude faster, cross-module program
analysis, optimization, and compilation, without increased devel-
opment complexity. In doing so, our hope is to make feasible many
optimizations and analysis techniques thus far unexplored.

Multiple recent efforts have attempted to tackle compiler scal-
ability challenges, for example by leveraging incremental view
maintenance to avoid repeated tree-traversals during optimiza-
tion [1], or by leveraging distributed datalog engines to scale up
program analysis [2, 4]. These efforts share a common strategy of re-
casting compiler problems (i.e., program analysis and optimization
tasks) into a declarative, relational abstraction, and then leveraging
already existing relational query processing techniques. By imple-
menting the compiler declaratively, these approaches decouple the
compiler’s implementation from its performance: (i) Compilation
performance improvements that may be too complicated or too
small to implement safely by hand can be automated; (ii) Compilers
be implemented through simpler, more idiomatic development pat-
terns, avoiding complexity for the sake of reduced compile times;
(iii) Static analysis can be used to assert soundness, completeness,
and/or stability of the compiler itself; and (iv) Data structures that
encode the program are decoupled from compiler logic, allowing
substantial reorganization with no change to the compiler. In short,
a compiler whose rules, analyses, and optimizations are specified
declaratively can be analyzed, and accelerated like queries in a
database.

Declarative Compiler Engines. Although similar to a database,
a declarative compiler engine is unique in several key respects.
First, like graph databases, declarative compilers involve high-width
joins (e.g., subgraph isomorphism over abstract syntax trees), and
recursive queries (e.g., existential tests over subtrees). However,
unlike graph databases, joins often have low fan-outs [3, 4], or even
simply foreign-key joins. Finally, declarative compilers feature large

numbers of queries (e.g., Spark 3.2 has over 300 distinct optimization
rules, each being effectively a query), all known upfront, and with
many work-sharing opportunities.

2 Multiquery Optimization
The search for optimization opportunities, in particular accounts
for up to 50% of the runtime of Spark’s Optimizer and up to 20%
of Orca’s optimizer [1], and is a huge source of work sharing op-
portunities. For example, Spark’s fixed point optimizer performs
a full tree traversal for every one of its 300 rules, with each tra-
versal applying predicates to the nodes of the tree, and replacing
nodes when the predicate succeeds (i.e., when an optimization
is found). If a node is replaced, the process must restart, and all
rules must be applied again. As a result, the optimizer’s runtime is
𝑂 (|Rules| · |Abstract Syntax Tree|) per fixed point iteration.

Fortunately for us, many of these passes are replicating work. For
example, Constant Folding and Predicate Pushdown, both standard
rules, both unwrap and manipulate Selection (Filter) operators. This
work can be shared if both rules (along with all other Filter-oriented
rules) are in-lined into a single pass: (i) Unwrapping and matching
structured data (e.g., S-expressions or Scala Case Classes) only needs
to happen once; (ii) Expensive predicates only need to be evaluated
once; (iii) The resulting access pattern is more cache friendly for
especially large queries.

Our talk will focus on our preliminary efforts on multiquery
optimization, leveraging opportunities for work sharing in query
optimization. We will focus, in particular on one especially costly
predicate: Recursive predicates. For example, consider an optimiza-
tion rule that removes ’Distinct’ operators in a relational algebra
query when the subquery is already distinct. Determining whether
a subquery is already distinct may require a recursive traversal
of the tree, leading to an 𝑂 (𝑁 2) runtime in tree size, where every
candidate node triggers a recursive tree traversal. We will outline
our approach to inlined evaluation of sets of optimization rules
containing partly overlapping, recursive predicates.

References
[1] Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy, and Lukasz Ziarek. 2021.

TreeToaster: Towards an IVM-Optimized Compiler. In SIGMOD.
[2] Thomas Gilray, Sidharth Kumar, and Kristopher K. Micinski. 2021. Compiling

data-parallel Datalog. In CC. ACM, 23–35.
[3] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality

saturation: a new approach to optimization. In POPL. ACM, 264–276.
[4] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosen-

thal, Zachary Tatlock, and Max Willsey. 2023. Better Together: Unifying Datalog
and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI (2023), 468–492.

	1 Introduction
	2 Multiquery Optimization
	References

