TreeToaster: Enabling Declarative Compilers

Darshana Balakrishnan*t, Oliver KennedyT, Lukasz ZiarekT,
Johannes Luong*, Hinnerk Gildhoff*, Gaurav Saxena*

Amazon*, University At Buffalo

Dec 12, 2024

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Compilers

SELECT A, C
FROM R, S
WHERE C >= 3 AND R.B = S.B

 Before we get to the main points, I need to make sure we have a bit of common background. I'm assuming familiarity with SQL, Relational Algebra, maybe Datalog? But today we're talking about compilers, so you need to know a bit about how those work. Let's use a SQL compiler as a motivating example. The first step is parsing, where it takes the string "code" and converts it to something more useful.

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Compilers

SELECT A, C
FROM R, S
WHERE C >= 3 AND R.B = S.B

!

 Before we get to the main points, I need to make sure we have a bit of common background. I'm assuming familiarity with SQL, Relational Algebra, maybe Datalog? But today we're talking about compilers, so you need to know a bit about how those work. Let's use a SQL compiler as a motivating example. The first step is parsing, where it takes the string "code" and converts it to something more useful.

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Parsing

1

TA,C

0C>3A(R.B=S.B)

|
VRN
R s

 I'm skipping some steps here, but the output of a parser is what's called an Abstract Syntax Tree (AST) This is a tree-shaped representation of the structure of the code. Usually, the output of parsing is a relatively naive representation of the code... there's likely a 'better' way to implement the logic

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Parsing

1

TA,C

|
0C>3A(R.B=S.B)
|
X
VRN
R S
l

 I'm skipping some steps here, but the output of a parser is what's called an Abstract Syntax Tree (AST) This is a tree-shaped representation of the structure of the code. Usually, the output of parsing is a relatively naive representation of the code... there's likely a 'better' way to implement the logic

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Optimization

TA,C

™R .B=S.B

/N

R gc>3

 An optimization pass takes an abstract syntax tree and applies a series of rewrite rules to produce a better, more efficient version of the AST. For example, here, the cartesian product has been converted into a join, and the remaining selection predicate has been `pushed down` to filter records out before they enter the join. par The resulting AST is expressed in the same 'language', but is better, at least along some axis. However, the AST itself isn't what the user wants...

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Optimization

 An optimization pass takes an abstract syntax tree and applies a series of rewrite rules to produce a better, more efficient version of the AST. For example, here, the cartesian product has been converted into a join, and the remaining selection predicate has been `pushed down` to filter records out before they enter the join. par The resulting AST is expressed in the same 'language', but is better, at least along some axis. However, the AST itself isn't what the user wants...

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Translation

data = {}
for r in R:
datal[r.B] = r
for s in S:
if s.C >= 3:
r = data[s.B]
print(r.A, s.C)

 Another task performed by the compiler is translation: going from one AST to another; for example translating the relational algebra expression on the previous slide to a lower-level (e.g., imperative) representation, and finally to binary code or as input to an interpreter.

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Translation

data = {}
for r in R:
datal[r.B] = r
for s in S:
if s.C >= 3:
r = data[s.B]
print(r.A, s.C)

 Another task performed by the compiler is translation: going from one AST to another; for example translating the relational algebra expression on the previous slide to a lower-level (e.g., imperative) representation, and finally to binary code or as input to an interpreter.

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Analysis

data = {}
for r in R:
datal[r.B] = r
for s in S:
if s.C >= 3:
r = datal[s.B]
print(r.A, s.C)

1

1076 rows

10 rows
50) selectivity
1007 selectivity

 Finally, analysis is the process of computing interesting properties for the tree (e.g., row counts and/or selectivity). par I'm abstracting a lot here, and it's not a straight path from parsing to optimization, translation, and analysis (optimization can depend on analysis, and many compilers use several translations with optimization steps in between), but after parsing, most everything is some flavor of translation, optimization, and/or analysis.

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Match/Case Expressions

Q = Q match {
case Filter(Equals(A, B), Cross(R, S))
if A in R.sch &% B in S.sch =>
Join(R, S, A, B)
case X => X

 Production rules are frequently implemented through a construct of many programming languages like Ocaml, Scala, or Rust, called a match or match/case statement. A match statement defines one or more case clauses; Each case clause defines the pattern to search for (a Filter, over a Cross), additional constraints on matches (schema tests), and defines a return value (e.g., a replacement) par Still, regardless of whether you define the operation by a production rule or a case statement, the central idea is simple...

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Local Reasoning

 ... all reasoning is local. I don't need to know anything about A, B, or C. Yes, I need to prove that the semantics of the substructure that I replace are equivalent to the semantics of the substructure I replace it with. However, once I do that, the rules become compositional: I define simple, easy to reason about behaviors, and the compiler stacks those simple behaviors together to create "better" ASTs, to translate between ASTs, or to compute global properties.

TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Local Reasoning

 ... all reasoning is local. I don't need to know anything about A, B, or C. Yes, I need to prove that the semantics of the substructure that I replace are equivalent to the semantics of the substructure I replace it with. However, once I do that, the rules become compositional: I define simple, easy to reason about behaviors, and the compiler stacks those simple behaviors together to create "better" ASTs, to translate between ASTs, or to compute global properties.

TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Optimization

rule;(Q) — better@

 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second...

TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Optimization

rule;(Q) — better@

ruley(betterQ) — better?Q

rules(better’Q) — better’Q

 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second...

TreeToaster: Enabling Declarative Compilers

L Background
LOptimizers

Optimization

rule;(Q) — better@

ruley(betterQ) — better?Q

rules(better’Q) — better’Q

rule;(better Q) — betterV1Q

 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second...

TreeToaster: Enabling Declarative Compilers

L Background
LOptimizers

Optimization

rule;(Q) — better@

ruley(betterQ) — better?Q

rules(better’Q) — better’Q

rule;(better Q) — betterV1Q

ruley(betterNT1Q) — better"*2Q

 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second...

TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Fixed Point Loops

while AST is being changed:
for rule in rules:
for node in AST:
if rule matches node:
replace node with rule(node)

 The details vary, but the core of most optimizers is what's called the Fixed Point Loop. For each rule, we try to apply the rule on each node of the tree. If any rule modified the AST in the last iteration, we go back to the first rule and repeat the process. par This approach is simple and elegant, but has a bunch of limitations...

TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Apache Spark / Catalyst

g3.0

K Il Search

_g‘ 2.5 Expression Xforms

g - HEEE |neffective Rewrites

=4 ' I Effective Rewrites

8 15 Fixpoint Loop

S HEl Untracked

ﬁl.of _-__- CL T B P
%os .I..l.l..lllllllllll.l
g

o
o

 We instrumented the Apache Spark Catalyst 3.2 optimizer. Each bar on this graph is one of the 22 TPC-H benchmark queries. The y-axis is the amount of time spent, and the color codes break down where the optimizer spends its time. Note that, for most queries, over half of the time is spent either looking for optimization opportunities (search), or checking to managing logistics and checking if it's done (fixpoint loop). In database terms, the compiler is spending half its time doing "full table scans" (over the AST).

TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Fixed Point Loops

while AST is being changed:
for rule in rules:
for node in AST:

if rule matches node:

/x ... %/

 The details vary, but the core of most optimizers is what's called the Fixed Point Loop. For each rule, we try to apply the rule on each node of the tree. If any rule modified the AST in the last iteration, we go back to the first rule and repeat the process. par This approach is simple and elegant, but has a bunch of limitations...

TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

The Fixed Point Loop Abstraction

Pro

m Simple

m Easy to Reason About

Con
m Slow

m Limited Expressiveness

 So, while the abstraction as a whole makes it very easy to reason about individual production rules, in practice, multiple workarounds are required to get the abstraction to work properly. The abstraction... leaks. par This leakage forces developers to trade off between optimizer performance and how maintainable the implementation is. Localized reasoning is great, but... fundamentally, production rule implementations end up necessarily expressing the 'how' of rewrites, and less so the 'what'. par But, us database folks have heard this story before...

TreeToaster: Enabling Declarative Compilers

L Declarative Compilers

A Broader Perspective

We've been talking about queries...

..but the same ideas show up in compilers in general.

TreeToaster: Enabling Declarative Compilers
L Declarative Compilers

La compiler compiler

Compilers are Databases

case Filter(Equals(A, B), Cross(R, S)) if ... =>
Join(R, S, A, B)

Vs

UPDATE ast SET node = Join(R, S, A, B)
WHERE node LIKE Filter (Equals(A, B),

 Every rewrite rule is essentially a pair of a Query (the pattern) and an Update (the replacement).

TreeToaster: Enabling Declarative Compilers
L Declarative Compilers

La compiler compiler

The ASTral Compiler

case ...
case ...

case ...

TreeToaster: Enabling Declarative Compilers
L Declarative Compilers

La compiler compiler

The ASTral Compiler

case ...
case ...

case ...

TreeToaster: Enabling Declarative Compilers
L Declarative Compilers

La compiler compiler

The ASTral Compiler

case ... Scala
case ... C++

case ... etc...

TreeToaster: Enabling Declarative Compilers
L Declarative Compilers

La compiler compiler

Overview

Optimization Rules as Queries
Evaluating ASTral

Indexing & Incremental View Maintenance

m State Machines for Multiquery Optimization

TreeToaster: Enabling Declarative Compilers

LOpt:imization Rules as Queries

Optimization Rules as Queries

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

if A in R.sch &% B in S.sch =>

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

if A in R.sch &% B in S.sch =>

(1)

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

/f A in\v\sch %% B in S.sch => ...

(1) (2)

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

/fAin\l\sch %% B in S.Sch => ...

(1) (2) 3)

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

if A in R.sch &% B in S.sgh => ...

(1) (2) 3)
(4)

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

if A in R.sch &% B in S.sgh => ...

(1) (2) 3)
(4) (5)

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

(4) (5)

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

Breaking down a Pattern

case Filter(Equals(A, B), Cross(R,S))

 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate...

TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

ASTral (The AST-Relational Algebra)

Node ~ Filter(X,Y)
A X ~ Equals(A,B)
A Y ~ Cross(R,S)

A A € R.sch

A B € S.sch

 We can call this 'atomizing' the production rule.

TreeToaster: Enabling Declarative Compilers
LEvaluating ASTral

Evaluating ASTral

TreeToaster: Enabling Declarative Compilers
L Evaluating ASTral
L Evaluation Logic

Compiled

for X in descendants(ROQT):
if X is Filter:
Y = X.condition
Z = X.child
if Y is Equality;
A = Y.lhs
B = Y.rhs
if Z is Cross;
R = Z.lhs
S = Z.rhs
if A in R.sch:
if B in S.sch:
replace X with Join(A, B, R, S)

 The compiled representation yields once for every matching node in the AST. par ... and so really what we want to do is 'replace' X in the query with the replacement. par There's some issues with doing this safely, but those are manageable. par Ok... great, we've reinvented match patterns. How does this help us?

TreeToaster: Enabling Declarative Compilers
L Evaluating ASTral

L Optimizer Performance

Optimizer Performance

o
Q
L
o))
c
I
£
i
S
= 1.5
c
[}
Q
1]
[}
£
[
©
K]
=4

w
<)

Il Search

Expression Xforms
I Ineffective Rewrites
I Effective Rewrites
]

N
w

N
o

Fixpoint Loop
Untracked
- -

=
o

o

w

[|
- |
|

- l
- l
I

Iz I
| S |
| O |
| DI |
| B |
| O |
| A |
| DB |
| A |

 Well, we started out by talking about performance problems. Remember, the optimizer is spending a good chunk of its time just looking for Optimization opportunities.

TreeToaster: Enabling Declarative Compilers
L Evaluating ASTral

L Optimizer Performance

Performance Opportunities

for X in descendants(ROQT):
if X is Filter:
Y = X.condition
Z = X.child
if Y is Equality;
A = Y.lhs
B = Y.rhs
if Z is Cross;
R = Z.lhs
S = Z.rhs
if A in R.sch:
if B in S.sch:
replace X with Join(A, B, R, S)

 Hmm... there's something here. Snips, enhance!

TreeToaster: Enabling Declarative Compilers
L Evaluating ASTral

L Optimizer Performance

So now what?

for X in descendants(ROOT):
if X is Filter:

 This looks awfully like a full table scan. And remember... this rule is being called repeatedly! par We're database folks. Build an Index!

TreeToaster: Enabling Declarative Compilers
L Evaluating ASTral

L Optimizer Performance

So now what?

for X in descendants(ROOT):
if X is Filter:

Build an index on Ancestor(ROOT,X) A X ~ Filter(_,_)

 This looks awfully like a full table scan. And remember... this rule is being called repeatedly! par We're database folks. Build an Index!

TreeToaster: Enabling Declarative Compilers
LIndexing

Indexing

TreeToaster: Enabling Declarative Compilers

L Indexing

Indexing

for X in descendants(ROOT):
if X is Filter:
Y = X.condition
Z = X.child

VS

for X in Index:
X.condition
X.child

N
o

 If we have the set of Index nodes precomputed, we can find rewrite opportunities much faster... of course, this means we need to update the index.

TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance

Index(X) : — Ancestor(ROOT,X) A X ~ Filter(_,_)

Say we replace o(x(R,S)) in the tree with > (R, S).

How does Index(X) change?

TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance

 The key thing here is that each update changes a small subtree; Most of the tree (both ancestors and descendants) passes through unchanged. If we label our three changed nodes m, n, and o...

TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance

 The key thing here is that each update changes a small subtree; Most of the tree (both ancestors and descendants) passes through unchanged. If we label our three changed nodes m, n, and o...

TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance

 The key thing here is that each update changes a small subtree; Most of the tree (both ancestors and descendants) passes through unchanged. If we label our three changed nodes m, n, and o...

TreeToaster: Enabling Declarative Compilers

L Indexing

Why stop at indexing?

Why not just compute:

Index; (X) : —

Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A,B)

N Z ~ Cross(R,S)

AN A e€R.schAB e S.sch

TreeToaster: Enabling Declarative Compilers

L Indexing

Why stop at indexing?

Why not just compute:

Index; (X) : —

Indexa(X) = —
Index3(X) : —

Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A,B)

N Z ~ Cross(R,S)

AN A e€R.schAB e S.sch

TreeToaster: Enabling Declarative Compilers
L Incremental View Maintenance

Incremental View Maintenance

TreeToaster: Enabling Declarative Compilers
LIncremental View Maintenance

L Implementing IVM

Rewrites Under IVM

while AST is being changed:
for rule in RULES:
while Index[rule] is not empty:
rewrite Index[rule] [0] with rule
update Indexes

 but...

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Implementing IVM

But...

Rule 1 Rule 2 Rule 3

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

8
8

TreeToaster: Enabling Declarative Compilers
LIncremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

T

IS
o

TreeToaster: Enabling Declarative Compilers
LIncremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

07—]
OKa o

T

'

m Remove n, m from indices.

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

07—]
OKa o

T

'

m Remove n, m from indices.

m Check o, p for matches.

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

07—]
OKa o

T

'

m Remove n, m from indices.
m Check o, p for matches.

m Done?

TreeToaster: Enabling Declarative Compilers
LIncremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

TreeToaster: Enabling Declarative Compilers
LIncremental View Maintenance

L Naive Updates are Not Quite Enough

Updating Materialized Views

Problem: (q) now matches on Rule 2.

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

Depth-Bounded Search

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

Depth-Bounded Search

TreeToaster: Enabling Declarative Compilers
LIncremental View Maintenance

L Naive Updates are Not Quite Enough

Depth-Bounded Search

— o0
I
depth
|
— 7

A rule of depth d needs to check d ancestors for a match.

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

And also...

m In-Situ parallel updates on Trees

m Aggressive Code In-lining

"Fluid Data Structures”; Balakrishnan, Ziarek, Kennedy (DBPL 2019)

"Tree Toaster: Towards an IVM-Optimized Compiler”, Balakrishnan et. al. (SIGMOD 2020)

TreeToaster: Enabling Declarative Compilers

‘—Incremental View Maintenance

L Naive Updates are Not Quite Enough

Faster

80000
] Naive @ Workload A
70000 4 Bl Index Wm Workload B
Il Classic <« Workload C
== 0BT » Workload D
2 600001 -7 * Workload F
g8
g 1 50000
£S
o & 40000
*
o0 I .
& 830000
]
za
< ™ 200001
10000
0 - - - - : : :
0 2000 4000 6000 8000 10000 12000 14000

Average total latency (search + maintenance)

"Tree Toaster: Towards an IVM-Optimized Compiler”, Balakrishnan et. al. (SIGMOD 2020)

TreeToaster: Enabling Declarative Compilers
LState Machines

State Machines

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

Back to the fixed point loop...

while AST is being changed:
for rule in rules:
for node in AST:

if node matches rule:
rewrite node

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

Spatial Locality

while AST is being changed:
for node in AST:
for rule in rules:
if node matches rule:
rewrite node

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

Eliminate Redundancy

while AST is being changed:
for node in AST:
rule = match node in RuleIndex:
rewrite node

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

De-duplicating Atoms

Qu(X): — Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A, B)

N Z ~ Cross(R,S)

AN A €R.sch AB € S.sch
Q(X): — Ancestor(ROOT, X)

A X ~Filter(Y,Z)

N Z ~ Project(P,S)

TreeToaster: Enabling Declarative Compilers
LState Machines

L Improving Spatial Locality

De-duplicating Atoms

Qu(X): — Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A, B)

N Z ~ Cross(R,S)

AN A €R.sch AB € S.sch
Q(X): — Ancestor(ROOT, X)

A X ~Filter(Y,Z)

N Z ~ Project(P,S)

@1 and @, share a prefix; Only check it once

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

State Machines

ROOT

Ancestor(ROOT, X)

X ~ Filter(Y,Z)

Z ~ Project(P,S) Z ~ Cross(R,S)

v

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

Expensive Predicates

Simple tests (e.g., X ~ Filter(Y,Z)) are cheap.

TreeToaster: Enabling Declarative Compilers
LState Machines
leproving Spatial Locality

Expensive Predicates

Simple tests (e.g., X ~ Filter(Y,Z)) are cheap.

..but some tests (does there exist a descendant with a columnar
storage model?) present substantial opportunities for work sharing.

TreeToaster: Enabling Declarative Compilers

L Conclusions

Conclusions

TreeToaster: Enabling Declarative Compilers

L Conclusions

Databases for Compilers

Compilers are an exciting database workload!

TreeToaster: Enabling Declarative Compilers

L Conclusions

The PL Community

m Equality Saturation: A New Approach to Optimization
Tate et. al.

m Better Together: Unifying Datalog and Equality
Saturation
Zhang et. al.

m Soufflé
https://souffle-lang.github.io/

m Higher-Order, Data-Parallel Structured Deduction
Gilray et. al.

https://souffle-lang.github.io/

TreeToaster: Enabling Declarative Compilers

L Conclusions

Visit Us!

.
7
\\\\\\W\N\W\\

.

TreeToaster: Enabling Declarative Compilers

L Conclusions

Conclusions

Revisiting optimization (and translation and analysis) rules as
queries creates opportunities for automatic optimization.

Decoupling compiler rewrite logic from performance optimizations
makes each easier to reason about.

Find Nick to talk about program analysis on disk, and Victoria to
talk about distributed IVM.

(and Pratik to talk about schema management for longitudinal surveys)

8

Perciva dc foly

8 ik

	Background
	Compilers and ASTs
	Optimizers

	Declarative Compilers
	A compiler compiler

	Optimization Rules as Queries
	Evaluating ASTral
	Evaluation Logic
	Optimizer Performance

	Indexing
	Incremental View Maintenance
	Implementing IVM
	Naive Updates are Not Quite Enough

	State Machines
	Improving Spatial Locality

	Conclusions

