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SELECT A, C
FROM R, S
WHERE C >= 3 AND R.B = S.B


 Before we get to the main points, I need to make sure we have a bit of common background. I'm assuming familiarity with SQL, Relational Algebra, maybe Datalog? But today we're talking about compilers, so you need to know a bit about how those work. Let's use a SQL compiler as a motivating example. The first step is parsing, where it takes the string "code" and converts it to something more useful. 
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 Before we get to the main points, I need to make sure we have a bit of common background. I'm assuming familiarity with SQL, Relational Algebra, maybe Datalog? But today we're talking about compilers, so you need to know a bit about how those work. Let's use a SQL compiler as a motivating example. The first step is parsing, where it takes the string "code" and converts it to something more useful. 
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 I'm skipping some steps here, but the output of a parser is what's called an Abstract Syntax Tree (AST) This is a tree-shaped representation of the structure of the code. Usually, the output of parsing is a relatively naive representation of the code... there's likely a 'better' way to implement the logic 


TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Parsing

1

TA,C

|
0C>3A(R.B=S.B)
|
X
VRN
R S
l


 I'm skipping some steps here, but the output of a parser is what's called an Abstract Syntax Tree (AST) This is a tree-shaped representation of the structure of the code. Usually, the output of parsing is a relatively naive representation of the code... there's likely a 'better' way to implement the logic 
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 An optimization pass takes an abstract syntax tree and applies a series of rewrite rules to produce a better, more efficient version of the AST. For example, here, the cartesian product has been converted into a join, and the remaining selection predicate has been `pushed down` to filter records out before they enter the join. par The resulting AST is expressed in the same 'language', but is better, at least along some axis. However, the AST itself isn't what the user wants... 
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data = {}
for r in R:
datal[r.B] = r
for s in S:
if s.C >= 3:
r = data[s.B]
print(r.A, s.C)


 Another task performed by the compiler is translation: going from one AST to another; for example translating the relational algebra expression on the previous slide to a lower-level (e.g., imperative) representation, and finally to binary code or as input to an interpreter. 
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TreeToaster: Enabling Declarative Compilers
L Background
LCompilers and ASTs

Analysis

data = {}
for r in R:
datal[r.B] = r
for s in S:
if s.C >= 3:
r = datal[s.B]
print(r.A, s.C)

1

# 1076 rows

# 10 rows
# 50) selectivity
# 1007 selectivity


 Finally, analysis is the process of computing interesting properties for the tree (e.g., row counts and/or selectivity). par I'm abstracting a lot here, and it's not a straight path from parsing to optimization, translation, and analysis (optimization can depend on analysis, and many compilers use several translations with optimization steps in between), but after parsing, most everything is some flavor of translation, optimization, and/or analysis. 
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Q = Q match {
case Filter(Equals(A, B), Cross(R, S))
if A in R.sch &% B in S.sch =>
Join(R, S, A, B)
case X => X


 Production rules are frequently implemented through a construct of many programming languages like Ocaml, Scala, or Rust, called a match or match/case statement. A match statement defines one or more case clauses; Each case clause defines the pattern to search for (a Filter, over a Cross), additional constraints on matches (schema tests), and defines a return value (e.g., a replacement) par Still, regardless of whether you define the operation by a production rule or a case statement, the central idea is simple... 
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 ... all reasoning is local. I don't need to know anything about A, B, or C. Yes, I need to prove that the semantics of the substructure that I replace are equivalent to the semantics of the substructure I replace it with. However, once I do that, the rules become compositional: I define simple, easy to reason about behaviors, and the compiler stacks those simple behaviors together to create "better" ASTs, to translate between ASTs, or to compute global properties. 
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 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second... 
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 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second... 
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 Today, we're going to focus primarily on optimization, although the general idea is applicable to the other two tasks. par Optimizers are defined by a set of production rules. Applying each rule to the query gets us a "better" version of the query. So, we apply the first rule, and then the second rule, and the third, and so forth... par Of course, after we apply a bunch of rules, we may have opened up opportunities for another rule. So now we need to go back and check the first rule again, and the second... 


TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Fixed Point Loops

while AST is being changed:
for rule in rules:
for node in AST:
if rule matches node:
replace node with rule(node)


 The details vary, but the core of most optimizers is what's called the Fixed Point Loop. For each rule, we try to apply the rule on each node of the tree. If any rule modified the AST in the last iteration, we go back to the first rule and repeat the process. par This approach is simple and elegant, but has a bunch of limitations... 


TreeToaster: Enabling Declarative Compilers
L Background
LOptimizers

Apache Spark / Catalyst

g3.0

K Il Search

_g‘ 2.5 Expression Xforms

g - HEEE |neffective Rewrites

=4 ' I  Effective Rewrites

8 15 Fixpoint Loop

S HEl Untracked

ﬁl.of _-__- CL T B P
%os .I..l.l..lllllllllll.l
g

o
o


 We instrumented the Apache Spark Catalyst 3.2 optimizer. Each bar on this graph is one of the 22 TPC-H benchmark queries. The y-axis is the amount of time spent, and the color codes break down where the optimizer spends its time. Note that, for most queries, over half of the time is spent either looking for optimization opportunities (search), or checking to managing logistics and checking if it's done (fixpoint loop). In database terms, the compiler is spending half its time doing "full table scans" (over the AST). 
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 The details vary, but the core of most optimizers is what's called the Fixed Point Loop. For each rule, we try to apply the rule on each node of the tree. If any rule modified the AST in the last iteration, we go back to the first rule and repeat the process. par This approach is simple and elegant, but has a bunch of limitations... 
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 So, while the abstraction as a whole makes it very easy to reason about individual production rules, in practice, multiple workarounds are required to get the abstraction to work properly. The abstraction... leaks. par This leakage forces developers to trade off between optimizer performance and how maintainable the implementation is. Localized reasoning is great, but... fundamentally, production rule implementations end up necessarily expressing the 'how' of rewrites, and less so the 'what'. par But, us database folks have heard this story before... 
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We've been talking about queries...

..but the same ideas show up in compilers in general.
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Compilers are Databases

case Filter(Equals(A, B), Cross(R, S)) if ... =>
Join(R, S, A, B)

Vs

UPDATE ast SET node = Join(R, S, A, B)
WHERE node LIKE Filter (Equals(A, B),


 Every rewrite rule is essentially a pair of a Query (the pattern) and an Update (the replacement). 
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La compiler compiler

The ASTral Compiler

case ... Scala
case ... C++

case ... etc...
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Evaluating ASTral

Indexing & Incremental View Maintenance

m State Machines for Multiquery Optimization
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case Filter(Equals(A, B), Cross(R,S))

if A in R.sch &% B in S.sch =>


 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate... 
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 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate... 
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 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate... 
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 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate... 
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 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate... 
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 Let's break down the pattern for a simple rule (e.g., join conversion). Fundamentally, this rule is a series of tests: 1. The node being matched had better be a filter node. 2. The node's condition had better be an equality test. 3. The node's child had better be a cross product 4. The left hand of the equality had better be in the left cross child's schema 5. The right hand of the equality had better be in the right cross child's schema par Note that these checks are correlated: the second and third checks reference the filter node's children, and the fourth and fifth checks reference children of the equals and Cross. par We can re-write these as a boolean predicate... 


TreeToaster: Enabling Declarative Compilers

LOptimization Rules as Queries

ASTral (The AST-Relational Algebra)

Node ~ Filter(X,Y)
A X ~ Equals(A,B)
A Y ~ Cross(R,S)

A A € R.sch

A B € S.sch


 We can call this 'atomizing' the production rule. 
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Compiled

for X in descendants(ROQT):
if X is Filter:
Y = X.condition
Z = X.child
if Y is Equality;
A = Y.lhs
B = Y.rhs
if Z is Cross;
R = Z.lhs
S = Z.rhs
if A in R.sch:
if B in S.sch:
replace X with Join(A, B, R, S)


 The compiled representation yields once for every matching node in the AST. par ... and so really what we want to do is 'replace' X in the query with the replacement. par There's some issues with doing this safely, but those are manageable. par Ok... great, we've reinvented match patterns. How does this help us? 
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 Well, we started out by talking about performance problems. Remember, the optimizer is spending a good chunk of its time just looking for Optimization opportunities. 
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Performance Opportunities

for X in descendants(ROQT):
if X is Filter:
Y = X.condition
Z = X.child
if Y is Equality;
A = Y.lhs
B = Y.rhs
if Z is Cross;
R = Z.lhs
S = Z.rhs
if A in R.sch:
if B in S.sch:
replace X with Join(A, B, R, S)


 Hmm... there's something here. Snips, enhance! 
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So now what?

for X in descendants(ROOT):
if X is Filter:


 This looks awfully like a full table scan. And remember... this rule is being called repeatedly! par We're database folks. Build an Index! 
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So now what?

for X in descendants(ROOT):
if X is Filter:

Build an index on Ancestor(ROOT,X) A X ~ Filter(_,_)


 This looks awfully like a full table scan. And remember... this rule is being called repeatedly! par We're database folks. Build an Index! 
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for X in descendants(ROOT):
if X is Filter:
Y = X.condition
Z = X.child

VS

for X in Index:
X.condition
X.child

N
o


 If we have the set of Index nodes precomputed, we can find rewrite opportunities much faster... of course, this means we need to update the index. 
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Index Maintenance

Index(X) : — Ancestor(ROOT,X) A X ~ Filter(_,_)

Say we replace o(x(R,S)) in the tree with > (R, S).

How does Index(X) change?



TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance



 The key thing here is that each update changes a small subtree; Most of the tree (both ancestors and descendants) passes through unchanged. If we label our three changed nodes m, n, and o... 


TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance



 The key thing here is that each update changes a small subtree; Most of the tree (both ancestors and descendants) passes through unchanged. If we label our three changed nodes m, n, and o... 


TreeToaster: Enabling Declarative Compilers

L Indexing

Index Maintenance



 The key thing here is that each update changes a small subtree; Most of the tree (both ancestors and descendants) passes through unchanged. If we label our three changed nodes m, n, and o... 
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Why stop at indexing?

Why not just compute:

Index; (X) : —

Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A,B)

N Z ~ Cross(R,S)

AN A e€R.schAB e S.sch
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Why stop at indexing?

Why not just compute:

Index; (X) : —

Indexa(X) = —
Index3(X) : —

Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A,B)

N Z ~ Cross(R,S)

AN A e€R.schAB e S.sch
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L Implementing IVM

Rewrites Under IVM

while AST is being changed:
for rule in RULES:
while Index[rule] is not empty:
rewrite Index[rule] [0] with rule
update Indexes


 but... 
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But...

Rule 1 Rule 2 Rule 3
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L Naive Updates are Not Quite Enough

Updating Materialized Views
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Updating Materialized Views
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L Naive Updates are Not Quite Enough

Updating Materialized Views
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m Remove n, m from indices.

m Check o, p for matches.
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L Naive Updates are Not Quite Enough

Updating Materialized Views
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OKa o

T

'

m Remove n, m from indices.
m Check o, p for matches.

m Done?
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L Naive Updates are Not Quite Enough

Updating Materialized Views

Problem: (q) now matches on Rule 2.
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Depth-Bounded Search
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Depth-Bounded Search
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A rule of depth d needs to check d ancestors for a match.
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L Naive Updates are Not Quite Enough

And also...

m In-Situ parallel updates on Trees

m Aggressive Code In-lining

"Fluid Data Structures”; Balakrishnan, Ziarek, Kennedy (DBPL 2019)

"Tree Toaster: Towards an IVM-Optimized Compiler”, Balakrishnan et. al. (SIGMOD 2020)
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"Tree Toaster: Towards an IVM-Optimized Compiler”, Balakrishnan et. al. (SIGMOD 2020)
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Back to the fixed point loop...

while AST is being changed:
for rule in rules:
for node in AST:

if node matches rule:
rewrite node
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Spatial Locality

while AST is being changed:
for node in AST:
for rule in rules:
if node matches rule:
rewrite node
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Eliminate Redundancy

while AST is being changed:
for node in AST:
rule = match node in RuleIndex:
rewrite node
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De-duplicating Atoms

Qu(X): —  Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A, B)

N Z ~ Cross(R,S)

AN A €R.sch AB € S.sch
Q(X): —  Ancestor(ROOT, X)

A X ~Filter(Y,Z)

N Z ~ Project(P,S)
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De-duplicating Atoms

Qu(X): —  Ancestor(ROOT, X)

A X ~ Filter(Y,Z)

A'Y ~ Equals(A, B)

N Z ~ Cross(R,S)

AN A €R.sch AB € S.sch
Q(X): —  Ancestor(ROOT, X)

A X ~Filter(Y,Z)

N Z ~ Project(P,S)

@1 and @, share a prefix; Only check it once
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State Machines

ROOT

Ancestor(ROOT, X)

X ~ Filter(Y,Z)

Z ~ Project(P,S) Z ~ Cross(R,S)

v
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Expensive Predicates

Simple tests (e.g., X ~ Filter(Y,Z)) are cheap.
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Expensive Predicates

Simple tests (e.g., X ~ Filter(Y,Z)) are cheap.

..but some tests (does there exist a descendant with a columnar
storage model?) present substantial opportunities for work sharing.
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Databases for Compilers

Compilers are an exciting database workload!
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The PL Community

m Equality Saturation: A New Approach to Optimization
Tate et. al.

m Better Together: Unifying Datalog and Equality
Saturation
Zhang et. al.

m Soufflé
https://souffle-lang.github.io/

m Higher-Order, Data-Parallel Structured Deduction
Gilray et. al.


https://souffle-lang.github.io/
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Visit Us!
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Conclusions

Revisiting optimization (and translation and analysis) rules as
queries creates opportunities for automatic optimization.

Decoupling compiler rewrite logic from performance optimizations
makes each easier to reason about.

Find Nick to talk about program analysis on disk, and Victoria to
talk about distributed IVM.

(and Pratik to talk about schema management for longitudinal surveys)

8

Perciva dc foly

8 ik



	Background
	Compilers and ASTs
	Optimizers

	Declarative Compilers
	A compiler compiler

	Optimization Rules as Queries
	Evaluating ASTral
	Evaluation Logic
	Optimizer Performance

	Indexing
	Incremental View Maintenance
	Implementing IVM
	Naive Updates are Not Quite Enough

	State Machines
	Improving Spatial Locality

	Conclusions

