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Range filters are probabilistic data structures that
answer approximate range emptiness queries. They
aid in avoiding processing empty range queries and
have use cases in many application domains such
as key-value stores [7, 16], social web analytics [4],
statistics aggregation of time series [8], and SQL
table accesses [10]. However, current range filter
designs do not support dynamically changing and
growing datasets [1, 19, 11, 18, 13, 9, 17, 2, 5]. More-
over, several of these designs also exhibit impracti-
cally high false positive rates under correlated work-
loads [1, 19, 18, 13, 9, 17, 2], which are common in
practice [5]. These impediments restrict the appli-
cability of range filters across a wide range of use
cases.

We introduce Memento filter, the first range fil-
ter to offer dynamicity, fast operations, and a ro-
bust false positive rate guarantee for any workload.
Memento filter partitions the key universe and clus-
ters its keys according to this partitioning. For each
cluster, it stores a fingerprint and a list of key suf-
fixes contiguously. The encoding of these lists makes
them amenable to existing dynamic filter structures.
Due to the well-defined one-to-one mapping from
keys to suffixes, Memento filter supports inserts and
deletes and can even expand to accommodate a grow-
ing dataset.

We implement Memento filter on top of a Rank-
and-Select Quotient filter [14] and InfiniFilter [6] and
demonstrate that it achieves competitive false posi-
tive rates and performance with the state-of-the-art
while also providing dynamicity. Due to its dynam-
icity, Memento filter is the first range filter appli-
cable to B-Trees [3, 15]. We showcase this by inte-
grating Memento filter into WiredTiger, a B-Tree-
based key-value store [12]. Memento filter doubles
WiredTiger’s range query throughput when 50% of
the queries are empty while keeping all other cost
metrics unharmed.
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