
Multi SQL dialect framework in GaussDB
Danny Chen, Yang Sun, Jun Tang

Cloud BU
Huawei Canada

danny.chen@huawei.com,yang.sun5@huawei.com,jun.tang1@huawei.com

1 Abstract
Although there are ANSI/ISO standards for SQL,
each database vendor may choose to implement its
own dialect. That may include grammar, data types,
function implementation, system table/views, proto-
cols. Database SQL compatibility allows applications
written for database A to run on another database
B without modification, if database B is compatible
with database A. With SQL compatibility feature,
database application developers can quickly adopt a
new database system with previous experiences; End
users can have the freedom to migrate their existing
applications to a different database for cost saving
purpose; DBAs can even consolidate their multiple
database systems into the same system for easy of
maintenance. Through this talk, we will describe
the challenges during the development and showcase
how we built a framework to support multiple SQL
dialects without sacrificing performance, while pro-
viding high degree of compatibility and maintaining
good isolation between the SQL dialects. Using this
framework, GaussDB already supported Oracle and
MySQL compatibility mode, and can easily extend
to support other modes when needed.

2 Challenges of supporting multi-
ple SQL dialects

Unlike developing a new database, supporting multi-
ple SQL compatibility modes requires the database
to be backward compatible to existing behavior,
while supporting new SQL dialects. The work fo-
cused on four major areas: protocol, syntax and
semantics, meta data and error handling. On top
of these changes, compatibility also affects deploy-
ment/migration process and utilities such as moni-
toring and backup/restore. Each of these areas has
its own challenges, here are some examples:

Each SQL dialects has its own set of keywords,
bringing challenges on identifier behavior, including
reserved objects and object case sensitiveness.

Each databases has its own typing system and type
conversion mechanism. They affect function lookup
as well. It is impractical to implement a whole new
mechanism for each compatibility mode.

Although SQL standard defined the guidance on
SQLSTATE, but it’s up to each database vendor to
define the error code which is closely tied to individ-
ual error scenarios. It’s almost impossible to map all
errors from one database to another implementation.

Intrusive changes to existing code may cause per-
formance degradation and duplicating too much logic
will make the maintenance difficult. Finding a good
balance between extensibility and good performance
is not trivial.

3 Introducing a framework to
support Multi-SQL dialect in
GaussDB

The framework includes an extension, a templated
database, a set of function hooks and the methodol-
ogy for error handling.

We contained all new logic, including grammar
definition, new protocol, new data types, new oper-
ator and function logic implementation, in its own
extension, which is similar to a plugin, and compiled
into a shared library. We carefully chose the new
logic entry point and define them as function hooks.
The function hooks are high enough to guarantees
isolation between different SQL dialects. Within
GaussDB’s typing system, we used a generic type
ANY to simulate weak type system like MySQL and
inherit CAST table for strong type systems. All
the objects including system catalogs, tables, views,
types, functions are grouped together and placed in
a template database. During compatibility mode
database creation, the template database is used to
speedup the creation process. The template database
and extension design also greatly simplified online
migration process as well as hot patch application
logic.


