
Scaling Storage Engines for 100x Big Data

Niv Dayan

Department of Computer Science
University of Toronto

nivdayan@cs.toronto.edu

1 Introduction
Our society is creating and storing exponentially increas-
ing amounts of data. What is often less thought of are
the storage engines that maintain this data and facilitate
the extraction of knowledge from it. In the late-2000s, a
new class of storage engines emerged that prioritize the
e�ciency of ingesting new data. They include Google’s
BigTable, Amazon’s DynamoDB, Facebook’s RocksDB,
as well as Apache Cassandra and HBase. These engines
have become indispensable for a wide range of applica-
tions, including cloud storage, blockchain, machine learn-
ing, etc. Nevertheless, a lingering problem is that their
performance deteriorates with respect to the amount of
data they store. This, in turn, causes applications run-
ning on top to have to spend disproportionately more
time, energy, and hardware in order to, say, transact on a
blockchain, train a deep learning model, or add a photo
to the cloud. This talk will discuss how to allow such
storage engines to function more e�ciently as the big
data that they store continues to grow.

2 Background
LSM-Tree. Modern storage engines streamline new ap-
plication data into storage (disk or SSD) as small sorted
�les, which are later merged into larger sorted �les. This
organization is known as a log-structured merge-tree
(LSM-tree). With LSM-tree, merging �les more eagerly
creates higher overheads for writes but allows for faster
queries as there are fewer �les to search. This trade-o� is
controlled by a compaction policy, which dictates which
�les to merge under which conditions.
Filters. Each �le of an LSM-tree is assigned a “�lter”

in fast memory (DRAM chips). A �lter is a compressed
approximate representation of a �le that takes up little
space. Filters can be quickly searched to rule out �les
that do not contain the target data. Thus, they elimi-
nate unnecessary accesses to slower storage. The more
space a �lter is assigned, the more accurate it becomes
thus allowing queries to rule out the �le with a higher
probability. An LSM-tree implements a �ltering policy to
decide how much memory to assign each �lter. Together,

the �ltering and compaction policies govern a three-way
trade-o� between the overheads of queries, writes and
space

3 Research Problem
As with most tree structures, LSM-tree’s query and write
overheads grow logarithmically with respect to the data
size. The intuition is that as the data grows, the number
of �les that must be queried and merged grows too. In
our current era of exponential data growth, logarithmic
scalability implies linearly increasing overheads with
respect to time. The outcome is rapidly deteriorating
performance. While it is possible to o�set one of the
overheads growing by another (e.g., by merging more
eagerly or allocating larger �lters to prevent query over-
heads from increasing), it is impossible with existing
designs to keep all three overheads steady at the same
time as the data grows. This begs a question: is it possi-
ble to achieve sub-logarithmic query and write costs for
an LSM-tree, all without hurting space?

4 Talk Content
This talk will discuss a series of papers that tackle the
problem of how to better scale performance as the data
grows in the context of LSM-trees. The talk can be given
at di�erent lengths, from 15 minutes to an hour, depend-
ing on the amount of time available. It will cover at least
two and at most all of the following papers: Monkey
(SIGMOD 2017), Dostoevsky (SIGMOD 2018), LSM-bush
(SIGMOD 2019), Rosetta (SIGMOD 2020), Chucky (SIG-
MOD 2021), and Spooky (VLDB 2022). These papers
show how to co-design the LSM tree’s compaction policy
with its �lters in ways that lead to asymptotic improve-
ments in both query and insertion throughput, meaning
that performance deteriorates more slowly or not at all
as the data grows. This talk will conclude with a vision
towards amorphous storage engines and data structures,
which self-design to optimize any application workload.


