
Incremental Computations of Connectivity Queries in Sliding
Windows over Streaming Graphs

Chao Zhang

David R. Cheriton School of Computer Science
University of Waterloo

chao.zhang@uwaterloo.ca

1 Introduction
Graphs have been the natural representation of data in
many domains. With graph structured data, the most in-
teresting operation is to compute connected components
(CCs) [4], which are subsets of vertices in a undirected
graph such that all vertices in the subset are connected
via paths. Analyzing CCs has wide applications in prac-
tice, including social networks, transport networks, etc.

In modern data-driven applications, stream processing
[5] is of significant importance. In stream processing,
computations are typically applied in sliding windows
[1] that are continuous finite subsets of streams over
the infinite input stream. Sliding windows are defined
using two parameters range and slide. For instance, a
sliding window with range 3 hours and slide 2 minutes
includes all the streaming data of the last 3 hours and the
window is updated every 2 minutes, i.e., deleting expired
streaming data and inserting new streaming data.
The naive approach to compute sliding window con-

nectivity is to traverse the streaming graph in each
window instance of the sliding window, e.g., perform-
ing breadth-first-search (BFS) in each window instance.
Apparently, the naive approach cannot meet the re-
quirement of real-time processing, which asks for high-
through and low-latency computations. A non-trivial
method is to use the well-known fully dynamic connec-
tivity (FDC) data structures [2, 3]. Specifically, FDC sup-
ports 3 operations: insert, delete, and query. Obvi-
ously, the insert and delete operations supported by
FDC can be used to deal with the updates required by slid-
ing windows. The main bottleneck of the FDC approach
is that the delete operation can have high latency as it
requires traversing the entire graph in the worst case.

We design the bidirectional incremental computation
(BIC) model to efficiently compute sliding window con-
nectivity, which can reduce the problem of sliding win-
dow connectivity into a bidirectional computation. The
main idea of BIC is that (i) streaming edges with con-
tiguous timestamps are grouped to form disjoint chunks;
(ii) window instances are split according to chunks; (iii)
queries are processed by applying partial computations

in chunks followed by merging the corresponding partial
results. Specifically, we compute two kinds of buffers
for each chunk: forward and backward buffers. Forward
buffers are computed incrementally by scanning stream-
ing edges from the first to the last in chunks while back-
ward buffers are computed in the same way except that
streaming edges are scanned from the last to the first
in chunks. These two kinds of buffers are stored and
merged to compute the query result of each window in-
stance. Consequently, the overhead of performing the
costly delete operation can be completely avoided.
In this presentation, we will elucidate the intricacies

of incremental computations within the forward and
backward buffers, as well as expound upon the merging
operation. Our work is ongoing, and in addition to de-
tailing our approach, we will also present preliminary
experimental results in comparison to state-of-the-art
methods based on FDC data structures.

References
[1] L. Golab and M. T. Özsu. Issues in data stream man-

agement. ACM SIGMOD Rec., 32(2):5–14, jun 2003.

[2] M. R. Henzinger and V. King. Randomized fully dy-
namic graph algorithms with polylogarithmic time
per operation. J. ACM, 46(4):502–516, 1999.

[3] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J. ACM, 48(4):723–760, 2001.

[4] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T.
Özsu. The ubiquity of large graphs and surprising
challenges of graph processing: extended survey.
VLDB J., 29(2):595–618, 2020.

[5] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, page 147–156, 2014.


