
Eventually Durable Replicated State Machines

Kriti Kathuria, Ken Salem

University of Waterloo
first.last@uwaterloo.ca

Consider a replicated key-value (KV) store as an ex-
ample of a replicated state machine. It consists of a
key-value store at each site and a replicated log. The
interface it exposes is put(key, value) and get(key). put
creates an entry in the replicated log, and once the en-
try has achieved majority replication, creates/updates
the key-value pair. get returns the latest value of the
key. The KV store guarantees that if a put succeeds, a
subsequent get will see its effect regardless of failures.
This write durability can be guaranteed because the put
does not return until it has achieved majority replication.
Therefore, durability is an expensive guarantee.

Hence, latency-sensitive applications may choose to
forgo durability for better performance in an ad-hoc man-
ner, like acknowledging put operations without wait-
ing for them to fully replicate. We present Eventually
Durable (ED) replicated state machines and establish a
principled approach for the applications to reason about
performance/durability tradeoffs they already make.

Like a regular KV store, an ED KV store also consists
of a key-value store at each site and a replicated log. It
also exposes a put and a get interface. get works like in
the regular KV store. put, on the other hand, does not
guarantee durability when it returns. A put may become
durable eventually, after it returns. In the meantime,
the application may proceed under the assumption that
the put will eventually become durable. That is, the
application can speculate on the eventual durability of
the put operation.
Additionally, the ED KV store provides a sync opera-

tion which returns after all preceding puts, and as a re-
sult, values read by preceding gets, have become durable.
sync is a tool for the application to resolve speculation
and thus, manage the risks associated with durability
speculation.

Applications accept the risk that the ED KV store will
lose some acknowledged puts in the event of a failure.
The ED model provides clear failure semantics that allow
applications to reason about possible data loss. Specifi-
cally, the ED model guarantees that a failure will result
in the resolution of all existing speculation — the specu-
lative entries that survive the failure will become durable
and will survive forever. The entries that get lost will
never reappear. In this way, there will only ever be a
single speculative “future” for the ED KV store.

Figure 1: Behaviour of the replicated log

Fig.1 illustrates the behavior ED KV store’s underlying
replicated log across a failure. Green depicts the durable
portion of the log and blue/pink depicts the speculative
portion. (a, b, c) show the log before a failure, and (d, e,
f) show the log after the failure. At first, the log contains
some durable entries and some speculative entries (a).
Then there is a failure (b) due to which some specula-
tive entries disappear (c). After the failure, the surviving
pre-failure speculation has become durable (d). The appli-
cation starts speculating again (e) and as time progresses,
a prefix of the new speculative entries is made durable,
and more speculative entries are added (f).

To support an ED replicated state machine, we have de-
veloped an ED variant of the Raft consensus algorithm[1].
ED Raft acknowledges new log proposals without wait-
ing for replication. Failures lead to the loss of speculative
log proposals. We show that ED Raft supports the failure
semantics described above.

References
[1] Diego Ongaro and John Ousterhout. In search of an

understandable consensus algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, page 305–320,
USA, 2014. USENIX Association.


