Do Programming Languages need Query Languages?

Jelle Hellings

Department of Computing and Software

McMaster University
1280 Main Street West, Hamilton, ON, Canada

1 Introduction

Data processing plays a central role in many general-
purpose programs. This central role is underlined by
the functionality included in standard support libraries
provided by modern programming languages. Take, for
example, the C++ standard library: this library includes
several efficient data structures to represent data collec-
tions and a plethora of algorithms to operate on these
data collections. Indeed, the algorithms in the C++ stan-
dard library can even be used to perform all elementary
relational algebra operations. Furthermore, the recently
added <ranges> functionality even allows for the high-
level expression of data processing operations via views.

To illustrate a high-level data processing task using
views, consider the following program that queries for
parents of children living in Hamilton:

using namespace std::views;

auto where_pred = [J(auto 1)
{ return 1.place == "Hamilton"; };
auto product_pred = [J(auto t)
{ auto [po, pl = t;
return po.child == p.name; };
for (auto [po, p] : cartesian_product(
parents,
persons | filter(where_pred)) |
filter(product_pred)) {
std::cout << po.parent << std::endl;

3

Similar functionality exists in most major programming
languages, e.g., LINQ in C# and other .NET languages,
Streams in Java, and list comprehensions in Python.
Although these data processing functionalities do pro-
vide the ability to express complex queries, they do not
guarantee performance: it is up to the programmer to
ensure an efficient program. A programmer can do so by
selecting the proper ways to structure, store, and main-
tain the data; the proper operations to perform on the
data; and the most efficient order of these operations.
In the example provided above, the programmer made

several poor decisions, e.g., by excessive copying and by
performing a potentially-expensive Cartesian product.

The attention to detail required for a performant data
processing program in C++ is in sharp contrast to how
any database system with a high-level query language op-
erates. For example, in a Datalog-based database system,
one could express the above query via the query:

Result(parent) :- parents(parent, c),
persons(c, "Hamilton").

The above Datalog query is significantly simpler than
the C++ program provided before. Furthermore, it is
highly likely that the database system will produce a
query evaluation strategy that is close to optimal (e.g.,
by using any indices available on parents and persons)
and much more efficient than the approach expressed by
the C++ program.

2 Problem Statement

Not all data processing tasks happen in an environment
in which a database system is available. Hence, shift-
ing data processing tasks toward database systems for
efficiency reasons is not always an option.

As an alternative, we propose a support library via
which one can embed high-level database-like data ab-
stractions and queries within the program (as-if these
where any ordinary data structure or algorithm). In spe-
cific, our support library embeds support for Datalog
queries and for specifying data structures that manage
relational data (including primary key and foreign key
constraints) into C++.

A crucial part of our approach is the development of a
compile-time query optimizer than can produce highly-
efficient query evaluation algorithms given only the in-
formation available when compiling source code: the
queries itself and the data structures on which these
queries will be evaluated. By performing query optimiza-
tion once at compile-time, we are able to apply the zero-
cost principle within our proposed library by eliminating
any unnecessary overheads and, hence, provide perfor-
mance close to (or even surpassing) carefully-crafted data
processing algorithms.

