
Do Programming Languages need Query Languages?

Jelle Hellings

Department of Computing and Software

McMaster University

1280 Main Street West, Hamilton, ON, Canada

1 Introduction

Data processing plays a central role in many general-

purpose programs. This central role is underlined by

the functionality included in standard support libraries

provided by modern programming languages. Take, for

example, the C++ standard library: this library includes

several efficient data structures to represent data collec-

tions and a plethora of algorithms to operate on these

data collections. Indeed, the algorithms in the C++ stan-

dard library can even be used to perform all elementary

relational algebra operations. Furthermore, the recently

added <ranges> functionality even allows for the high-

level expression of data processing operations via views.
To illustrate a high-level data processing task using

views, consider the following program that queries for
parents of children living in Hamilton:

using namespace std::views;

auto where_pred = [](auto l)
{ return l.place == "Hamilton"; };

auto product_pred = [](auto t)
{ auto [po, p] = t;
return po.child == p.name; };

for (auto [po, p] : cartesian_product(
parents,
persons | filter(where_pred)) |

filter(product_pred)) {
std::cout << po.parent << std::endl;

}

Similar functionality exists in most major programming

languages, e.g., LINQ in C# and other .NET languages,

Streams in Java, and list comprehensions in Python.

Although these data processing functionalities do pro-

vide the ability to express complex queries, they do not

guarantee performance: it is up to the programmer to

ensure an efficient program. A programmer can do so by

selecting the proper ways to structure, store, and main-

tain the data; the proper operations to perform on the

data; and the most efficient order of these operations.

In the example provided above, the programmer made

several poor decisions, e.g., by excessive copying and by

performing a potentially-expensive Cartesian product.
The attention to detail required for a performant data

processing program in C++ is in sharp contrast to how

any database systemwith a high-level query language op-

erates. For example, in a Datalog-based database system,

one could express the above query via the query:

Result(parent) :- parents(parent, c),
persons(c, "Hamilton").

The above Datalog query is significantly simpler than

the C++ program provided before. Furthermore, it is

highly likely that the database system will produce a

query evaluation strategy that is close to optimal (e.g.,

by using any indices available on parents and persons)
and much more efficient than the approach expressed by

the C++ program.

2 Problem Statement
Not all data processing tasks happen in an environment

in which a database system is available. Hence, shift-

ing data processing tasks toward database systems for

efficiency reasons is not always an option.

As an alternative, we propose a support library via

which one can embed high-level database-like data ab-

stractions and queries within the program (as-if these

where any ordinary data structure or algorithm). In spe-

cific, our support library embeds support for Datalog

queries and for specifying data structures that manage

relational data (including primary key and foreign key

constraints) into C++.

A crucial part of our approach is the development of a

compile-time query optimizer than can produce highly-

efficient query evaluation algorithms given only the in-

formation available when compiling source code: the

queries itself and the data structures on which these

queries will be evaluated. By performing query optimiza-

tion once at compile-time, we are able to apply the zero-
cost principle within our proposed library by eliminating

any unnecessary overheads and, hence, provide perfor-

mance close to (or even surpassing) carefully-crafted data

processing algorithms.

