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Motivation

e ML in Databases
Cardinality estimation
Query optimization
Indexing

Buffer Manager?

o O O O

e Instance Optimized
o  Offers correlation (predictability) with specific
m  Workload
m Data distribution
o Performance boost
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Page access prediction

e Predicting access patterns
o Memory access
o File access
e Access patterns are a sequence

o Natural sequence prediction problem
o NLP models like LSTM and transformers

Page access predictions



Transformers do NOT work!!




Transformers do not work!!

e Sequential nature of prediction

Million times

Impractical for prefetch

Few milliseconds



Transformers do not work!!

e Sensitivity to query predicates




Transformers do not work!!

e Irregular block access




Transformers do not work!!

e Irregular block access




Transformers do not work!!

e Page access distribution

Pages accessed many times

Transformers are bad at learning long tail knowledge



Transformers do not work
NOW

With better and faster models
Prefetch is possible in the future




Hybrid Predictor

Pages

Yes/No

For quick inference

For better representation
learning



Experiments

e DSB OLAP benchmark

o 100GB database

o Query templates as workloads
e Postgres

o Enhance postgres to prefetch pages
e Performance metrics

o F1-score for model accuracy

o Speedup for prefetch improvement
e Baselines

o Oracle (ORCL) - knows all future page accesses for a query
o Nearest neighbour (NN) - knows closest set of page accesses from the training pool



Experiments
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Impact of random reads
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(b) Template 18

Impact of miscellaneous factors on template-18

=

t : :

SF25 SE50 SF-100

(a) Scale Factor

!

% L]
10% 25% 0% 5%

(b) Training Data Size

100%

Impact of concurrent queries on template-18
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(a) 2 concurrent queries
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(b) 3 concurrent queries
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(c) Readahead Size Window
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(c) 4 concurrent queries
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(d) Speedup when predicting top-k
frequent pages
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(d) 5 concurrent queries




Conclusion

e Page access patterns are predictable

e Prefetching provides high performance benefits

e Integration with Postgres for experimental evaluation



Questions?




