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random writes to small entries: a bad idea
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Can random writes be eliminated?



The Log-Structured Merge-Tree
1996 - Patrick O’Neil
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How well can LSM-tree handle exponential data growth?
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Can we scale better? 
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Monkey: Optimal Navigable Key-Value Store SIGMOD17



Bloom
filters

                                       

data

Monkey: Optimal Navigable Key-Value Store



Bloom

filters

                                       

data

negative

X true positive

false positive

read(X)



M

M

M

Bloom

filters

                                       

data bits/entry 



Bloom

filters

                                       

data

M

M

M

bits/entry 



Bloom

filters

false 
positive rate

2-M ·ln(2)

2-M ·ln(2)

2-M ·ln(2)

                                       

data



Bloom

filters

false 
positive rate

2-M

2-M

2-M

                                       

data



Bloom

filters

false 

positive rate

O(2-M · logR N)  I/O    =

2-M

2-M

2-M



Bloom

filters

false 

positive rate

O(2-M · logR N)  I/O    =

2-M

2-M

2-M



false 

positive rate

2-M

2-M

2-M

Bloom

filters

most 
memory



false 

positive rate

Bloom

filters

saves at most 1 access!
2-M

2-M

2-M

most 
memory



M - 1

M + 1

M + 2

reallocate

bits / entry



2-(M - 1)

2-(M + 1)

2-(M + 2)

false 

positive rates



2-M / R0

2-M / R1

2-M / R2

The optimal false positive rate for a run’s filter is 
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Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store
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Problem:     Reduce filter accesses
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