
Niv Dayan
University of Toronto

Scaling Storage Engines for
100x Big Data

Storage Engines

query language
(eg SQL)

query language

(eg SQL)

read(key)

write(key, value)

query language

(eg SQL)

read(key)

write(key, value)

blocked
reads/writes

B-tree
(1970’s)

data

X

Y

Z

data

X

Y

Z

random write
s

random writes to small entries: a bad idea

mechanical
latency

random writes to small entries: a bad idea

4KB access
garbage-collection

random writes to small entries: a bad idea

mechanical

latency

random writes to small entries: a bad idea

mechanical

latency

4KB access

garbage-collection

Can random writes be eliminated?

The Log-Structured Merge-Tree
1996 - Patrick O’Neil

LSM-Tree

Google's BigTable

Amazon’s DynamoDB
Facebook’s RocksDB

…

Apache Cassandra

1 3 6

2 4 5

1 2 3 4 5 6

buffer merge-sort

1 3 6

2 4 5

1 2 3 4 5 6

only sequential writes

How well can LSM-tree handle exponential data growth?

data size

time

logarithmic scaling

O(log N)

logarithmic scaling

O(log N) O(2 time)

exponential growth

N ∈

O(time)

linear scaling

Can we scale better?

key-value pairs

LSM-Tree

level 1

level 2

level 3

buffer

LSM-Tree

level 1

level 2

level 3

buffer

sort & flush run

key-value pairs

LSM-Tree

level 1

level 2

level 3

buffer

Sort-merge

key-value pairs

newest to
oldest X

read(X)

X

pointers

Df

Df

1 access per run

read(X)

pointers

Df

Df

Bloom
filters

X

Df

Df

skip runs

read(X)

Df

Df

data size

logR(N)

Df

Df

logR(N)

xR
xR

size ratio

Df

Df

O(log(N))reads & writes ∈

storage
writes

storage
reads O(log N) O(?)

O(log N) O(?) O(?)

CPU
reads O(log N) O(?)

Monkey: Optimal Navigable Key-Value Store SIGMOD17

Bloom
filters

data

Monkey: Optimal Navigable Key-Value Store

Bloom

filters

data

negative

X true positive

false positive

read(X)

M

M

M

Bloom

filters

data bits/entry

Bloom

filters

data

M

M

M

bits/entry

Bloom

filters

false
positive rate

2-M ·ln(2)

2-M ·ln(2)

2-M ·ln(2)

data

Bloom

filters

false
positive rate

2-M

2-M

2-M

data

Bloom

filters

false

positive rate

O(2-M · logR N) I/O =

2-M

2-M

2-M

Bloom

filters

false

positive rate

O(2-M · logR N) I/O =

2-M

2-M

2-M

false

positive rate

2-M

2-M

2-M

Bloom

filters

most
memory

false

positive rate

Bloom

filters

saves at most 1 access!
2-M

2-M

2-M

most
memory

M - 1

M + 1

M + 2

reallocate

bits / entry

2-(M - 1)

2-(M + 1)

2-(M + 2)

false

positive rates

2-M / R0

2-M / R1

2-M / R2

The optimal false positive rate for a run’s filter is

proportional to the run’s size.

Design Principle:

∝
∝
∝

O(2-M) I/O =

geometric
 progression

2-M / R0

2-M / R1

2-M / R2

O(2-M) I/O < O(2-M · logR-N)

Faster worst case

O(2-M · logR-N)

O(2-M) I/O

#entries (log scale)

re
ad

 la
te

nc
y

(m
s)

RocksDB

Monkey

buffer 2MB

bits/entry: 5

size ratio: 2

1KB entries

queries to missing keys

hard disk storage

Configuration

storage

writes

storage

reads

O(log N) O(?) O(?)

O(2-M · logR-N) O(2-M)

CPU

reads O(log N) O(?)

Dostoevsky
SIGMOD18

Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

write optimized

write cost breakdown

merge 1

write cost breakdown

Rmerge

O(R · logR N)O(R)

O(R)

O(R)

writes

O(2-M) O(R · logR N)

2-M

2-M/R

2-M/R2

=

+

+

=

+

+

O(R)

O(R)

O(R)

writesreads

2-M

O(R)

O(R)

O(R)

largest level all levels
writesreads

excessive
O(R)

O(R)

O(R)2-M

writesreads

make lazy
O(R)

O(R)

O(R)

writesreads

2-M

Dostoevsky

greedy

lazy

merge when

level fills up

Dostoevsky

merge when

new run comes in

Dostoevsky

reads writes

false positive rates

2-M

2-M/R2

2-M/R3

reads writes

O(2-M)
reads writes

O(1)

O(1)

O(R)

O(2-M)
writesreads

O(R + logR N)

O(1)

O(1)

O(R)

O(2-M)
writesreads

O(R + logR N)O(e-M)
writesreads

O(R · logR N)<

O(R + logR N)
Dostoevsky

LSM-Bush

x2

x4

x16

more runs

O(log2 log2 N)

SIGMOD 18 SIGMOD 19

14

0av
g.

 w
rit

e
la

te
nc

y
(u

s)

data size

1 GB 64 GB

buffer 2MB

size ratio: 5

1KB entries

SSD storage

Configuration

O(R + logR N)

O(R · logR N)

O(log2 log2 N)

Dostoevsky

RocksDB

LSM-Bush

14

0

w
rit

e
la

te
nc

y

data size
1 GB 64 GB

O(R + logR N)

O(R · logR N)

O(log2 log2 N)

Dostoevsky &

RocksDB

LSM-Bush

O(2-M · logR N)

O(2-M) I/O

re
ad

 la
te

nc
y

data size
1 GB 64 GB
0

120

storage

writes

storage

reads

O(R · logR N) O(log2 log2 N)

O(e-M)

CPU

reads O(logR N) O(?)

O(R + logR N)

O(2-M · logR-N)

Chucky: Succinct Cuckoo Filter for LSM-Tree

SIGMOD 2021

Bloom

filters

O(1)

O(1)

O(1)

= O(logR N)

read

level

XO(R)

O(R)

O(R)

= O(R · logR N)

0

1

2

3

one I/O per run

Problem: Reduce filter accesses

hash table

key Level ID

hash() = ……

hash() = ……

cuckoo filter

O(log2 logR N)

O(log2 logR N)

000

001

010

……

Binary encoding

O(1)

……

0

10

110

e.g., unary encoding

O(1)≈Bits / entry O(1)

ChuckyMonkey

memory
accesses O(1)O(logR N) >

storage

writes

storage

reads O(2-M · logR-N) O(2-M)

CPU

reads O(logR N) O(1)

O(R · logR N) O(log2 log2 N)O(R + logR N)

Our storage engines
can better handle exponential data growth

Many open problems

Our storage engines

can better handle exponential data growth

open problems

range
filtering compression key-value

separation

Thanks!

