Scaling Storage Engines for
100x Big Data

Niv Dayan
University of Toronto

Storage Engines

query language
(eg SQL)

query language read(key)

(eg SQL) write(key, value) —

query language read(key) blocked
(eg SQL) write(key, value) p— reads/writes

x D »'.
BN S -
B R

A A St . . W Bk

~ 4o N .

be ™.

data

data

1

a

n

d
o
m
W
1
It
e
S
t
o
S
m
all e
n
i
r
e
S
- a
b
a
d
id
e
a

random writes to small entries: a bad idea

0

mechanical
latency

random writes to small entries: a bad idea

mechanical 4KB access
latency

random writes to small entries: a bad idea

mechanical AKB access
latency garbage-collection

Can random writes be eliminated?

The Log-Structured Merge-Tree
1996 - Patrick O'Nell

LSM-Tree

Google's BigTable
Amazon's DynamoDB
Facebook's RocksDB

Apache Cassandra

merge-sort

o S
= .
S

\
\
\
\
\!
.) |
.-) ‘
f
N
/
1,
J/
/
/
/
/
%

How well can LSM-tree handle exponential data growth?

<

data size }

logarithmic scaling

O(log N)

logarithmic scaling exponential growth

O(log N) N € O(2 time)

linear scaling

O(time)

® B

Can we scale better?

| SM-Tree

key-value pairs

v
buffer
o) level 1
o level 2
----------------------------------- level 3

~ 4

key-value pairs
'

buffer

| SM-Tree

sort & flush .. run

~ 4

level T

key-value pairs
'

buffer

| SM-Tree

Sort-merge

'--— ---------------

‘--— -------------------------------

~ 4

level T

read(X) #
}

® newest to <
oldest

read(X) # a

pointers 1 access per run

loga(N) <

I

data size

loga(N) <

[

size ratio

reads & writes & O(log N)

storage
reads

storage
writes

CPU
reads

O(log N)

O(log N)

O(log N)

Monkey: Optimal Navigable Key-Value Store SIGMOD17

Monkey: Optimal Navigable Key-Value Store

Bloom
filters

) 4
) 4

@
G
G Y

data

Bloom read(X)
filters

negative Y

4 f *, A .::;. t I

) 4

data

data

Bloom
filters

) 4
) 4
) 4

bits/entry
M
M

M

data

Bloom
filters

Y
) 4

) 4

bits/entry
M

M

data

Bloom
filters

Y
) 4

) 4

false
positive rate

2-M -In(2)
2-M1 -In(2)

2-M-In(2)

data

Bloom
filters

Y
) 4

) 4

false
positive rate

2-M
2-M

2-1

Bl\oom
filters

fals

ralse

positive rat
e

2-M
D-M

2D-M

O -
(2™ - logr N)

B.\oom
filters

fals

ralse

positive rat
e

2-M
D-M

2D-M

O o
(2™ - logr N)

mmost
emory

Bl\oom
filters

fals

ralse

positive rat
e

DM
DM

D-M

Bloom false
filters positive rate

-M
D-M

memory saves at most 1 access!

bits / entry

Y M + 2
Y M + 1 reallocate
M -1

) 4

false
positive rates

D(M+2)

Y
) 4

Y OM-1) 4

OM+1)

Design Principle: The optimal false positive rate for a run’s filter is
poroportional to the run's size.

X 2—/\4/ R2
x M/R1

X DO-M / RO

om /R geometric
progression

oM /R > = O(2M)

2M/ RO

Faster worst case

O2-M) < O(2M-logr N)

Configuration
bufter 2MB

bits/entry: 5
size ratio: 2

1KB entries
gueries to missing keys
hard disk storage

read latency (ms)

p—
S

S =N W ok Ot OO N oo OO

1 Monk _
@ omn e};/{;\@ O(2-M

s O(2M-logr N)

i

‘entries (log scale)

storage
reads

storage
Wwrites

CPU
reads

O(2M - logr N)

O(log N)

O(log N)

Dostoevsky
SIGMOD18

Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store

write optimized

write cost breakdown

write cost breakdown

merge 1

Wwrites

> O(R: logr N)

reads

O(2-M)

2-M/ 2

2-MR

D-M

writes

O(R - logr N)

L9 9
3 3

O
By

reads writes
largest level all levels

< O(A)
< O(R)

o
-
v - @D - o

reads writes

+~ O(R)
excessive

o
o -on S
v - @D - o

reads writes

make lazy

~ O(R) } o>

< O(R)

o
-
v - @D - o

Dostoevsky

lazy

Dostoevsky

'" merge when

... level fills up
g

Dostoevsky

QU - Mmerge when

new run comes in

reads writes

reads writes

false positive rates

DM/ R3 1]

N 11

reads writes
O(2-M)

reads writes
O(2-M)

reads writes
O(2-M)

O(1) > O(R +logrN)

reads writes
O(e-M) O(R +logaN) < O(R-logrN)

Dostoevsky LSM-Bush
O(R + logr N) O(logz logz N)

16 \o
2 %

S G

"' ’BXZ
G

SIGMOD 18 SIGMOD 19

Configuration

buffer 2MB
size ratio: 5

1KB entries

SSD storage

avg. write latency (us)

1G

data size

64 G

write latency

—h
N

O

O(R . \OQR I\D

O(R + \OOR N) B

_’//0

?

()

64 GB
data size

120

//EﬂsiB'//‘ O(Z-M) IogR N)

=
O
A R G
© |Dostoevsky &
-
®©
L
0
1 GB 64 GB

data size

storage
reads

storage
writes

CPU
reads

— O(R + logr N)

e

—

O(logzlog:z N)

Chucky: Succinct Cuckoo Filter for LSM-Tree

SIGMOD 2021

read

Bloom
filters

O(1)) 4

o) 1

O(1) Y

=0O(logr N)

oR) & w b

O(R) Y!h Y!h Y!“

o e e e

=0O(R-logr N)

Problem: Reduce filter accesses

hash table

S v

Level ID

fhash(o-r) =

cuckoo filter

Binary encoding

010

001

000

\

> O(log2 logr N)

e.d., unary encoding

\

110

> 0(1)
10

Morl;liéy

Bits / entry O(1)

)
O
=

memory
accesses O(logr N)

O(1)

storage
reads

storage
writes

CPU
reads

O(2-M - logr N)

O(R - logr N)

o

— O(R+IlogrN) — Of(logzlogz N)

Our storage engines
can better handle exponential data growth

Our storage engines
can better handle exponential data growth

Many open problems

open problems

range _ key-value
o compression _
filtering separation

~(mn()- ")I(" QQ

