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Storage Engines
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random writes to small entries: a bad idea
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mechanical 4KB access
latency




random writes to small entries: a bad idea
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Can random writes be eliminated?



The Log-Structured Merge-Tree
1996 - Patrick O'Nell




LSM-Tree

Google's BigTable
Amazon's DynamoDB
Facebook's RocksDB

Apache Cassandra



merge-sort




o S
= .
S

\
\
\
\
\!
. ) |
.- ) ‘
f
N
/
1,
J/
/
/
/
/
%




How well can LSM-tree handle exponential data growth?
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logarithmic scaling
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logarithmic scaling exponential growth
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linear scaling
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Can we scale better?
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reads & writes & O(log N )
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Monkey: Optimal Navigable Key-Value Store SIGMOD17




Monkey: Optimal Navigable Key-Value Store
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Bloom false
filters positive rate
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memory saves at most 1 access!
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Design Principle: The optimal false positive rate for a run’s filter is
poroportional to the run's size.
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Faster worst case
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Configuration
bufter 2MB

bits/entry: 5
size ratio: 2

1KB entries
gueries to missing keys
hard disk storage

read latency (ms)
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Dostoevsky
SIGMOD18



Dostoevsky: Space-Time Optimized Evolvable Scalable Key-Value Store
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Dostoevsky
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Dostoevsky
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reads writes
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Dostoevsky LSM-Bush
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Configuration

buffer 2MB
size ratio: 5

1KB entries

SSD storage

avg. write latency (us)

1G

data size
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Chucky: Succinct Cuckoo Filter for LSM-Tree

SIGMOD 2021



read

Bloom
filters

O(1) ) 4

o) 1

O(1) Y

=0O(logr N)



oR) & w b

O( R) Y!h Y!h Y!“

o e e e

=0O(R-logr N)




Problem: Reduce filter accesses
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Binary encoding

010

001

000

\

> O(log2 logr N)




e.d., unary encoding
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Our storage engines
can better handle exponential data growth




Our storage engines
can better handle exponential data growth

Many open problems



open problems

range _ key-value
o compression _
filtering separation

~(mn()- ")I(" QQ







