

Math Information Retrieval using a Conventional Search Engine

Motivation

- Searching a STEM corpus requires awareness of math formulas and math terminology

Searching Math Stack Exchange

- Given a query from Math Stack Exchange (MSE), find suitable answers in the corpus of other MSE questions and answers and return a ranked list.

Evaluate the definite integral: $\int_0^\infty e^{-hx^2} dx$

calculus , integration , definite-integrals

where $h > 0$. Could someone explain to me how to solve it? I searched the internet and I found the result is $\frac{\sqrt{\pi}}{2\sqrt{h}}$ but I couldn't understand Gauss error function - that is involved in solving.

Ranked list of answers

1 Change variables. Let $z = x^2$. We find

$$\int_0^\infty e^{-x^2} dx = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}.$$

Addendum: Setting $z = 1/2$ in Euler's reflection formula, $\Gamma(1-z)\Gamma(z) = \pi/\sin \pi z$, we find $\Gamma(1/2) = \sqrt{\pi}$.

2 First solve by simple substitution the integral $\int_0^\infty e^{-ax^2} dx$ and the differentiate that result twice with respect to a . The answer is a special case of $\int_{-\infty}^\infty x^{2m} e^{-\beta x^{2m}} dx = \Gamma(v) / (n\beta^v)$ with $v \equiv (2m+1) / (2n)$.

3 In order to solve the integral by polar coordinates first consider $I_s = \int_{-\infty}^\infty e^{-sx^2} dx$. The integral you seek will be obtained by differentiation as $-\frac{d}{ds} I_s \Big|_{s=1}$.

Now, to evaluate I_s :

$$I_s^2 = \int_{-\infty}^\infty e^{-sx^2} dx \cdot \int_{-\infty}^\infty e^{-sy^2} dy = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-s(x^2+y^2)} dx dy$$

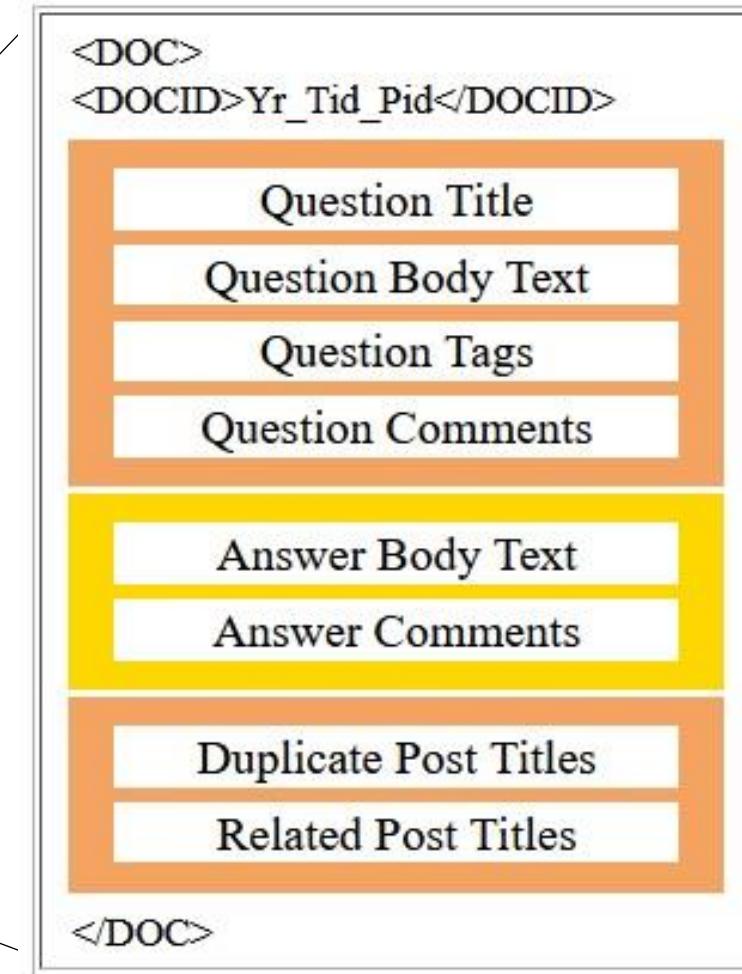
Now change variables into polar coordinates $x = r \sin \theta$ and $y = r \cos \theta$...

...

Human judgements

Medium Relevance

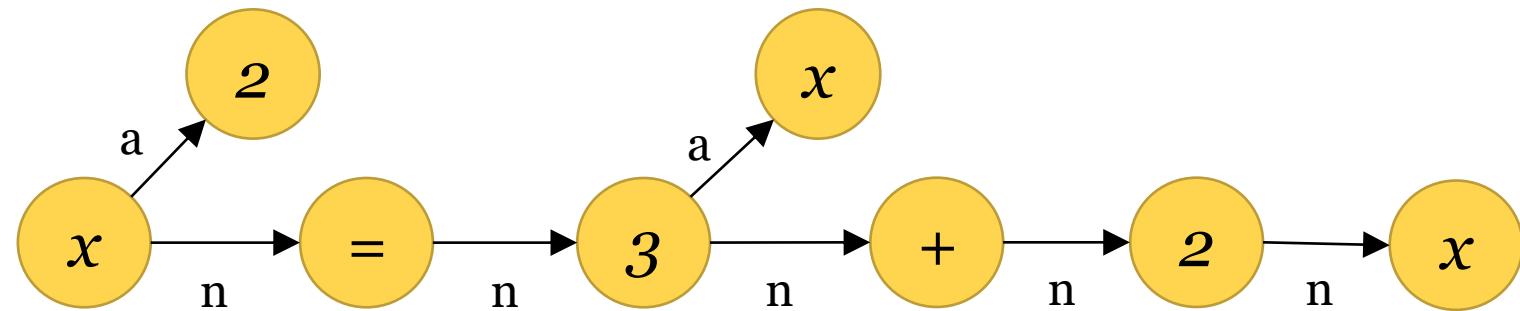
Irrelevant


High Relevance

Corpus Document Format

- Archived threads from 2010 – 2018
- 1.1 million questions and 1.4 million answers

<https://github.com/kikingo501/MathDowsers-ARQMath>


Conventional Search Engine

- Convert natural language text to tokens:
 - Treat hyphens as spaces (e.g., “Knuth-Morris-Pratt” → “Knuth Morris Pratt”)
 - Deal with other punctuation (e.g., “Beth’s tableaux.” → “Beth tableux”)
 - Use spaces as token boundaries (e.g., “Abelian group” → “Abelian”, “group”)
 - Fold to lower case (e.g., “Graph Theory” → “graph theory”)
 - Apply stemming (e.g., “solving” | “solve” | “solves” → “solv”)
 - Remove stop words (e.g., “the”, “in”)
- Treat document as *bag of tokens*
 - Postings lists for each token comprised of docid/frequency pairs
- Use BM25 (variant of tf*idf) for searching and scoring matches

} extended to Unicode

Handle Formulas by Converting to Bags of Math Tuples

- $x^2 = 3^x + 2x$

- Tuples from the **Symbol Layout Tree**:

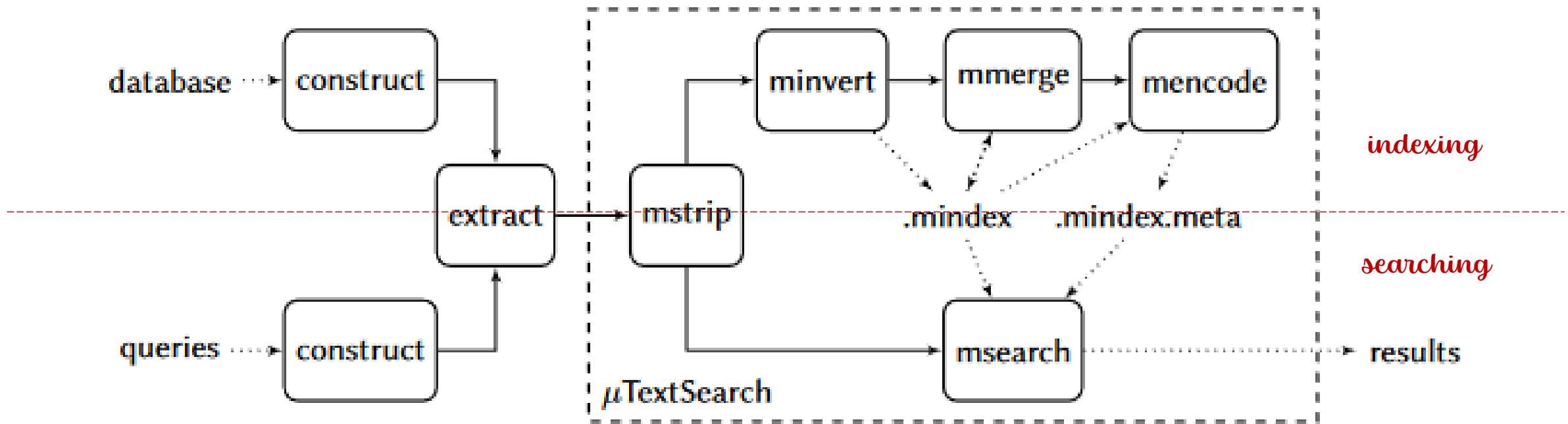
- 7 symbol pairs (s_1, s_2, R)
- 3 terminal symbols ($s, !o$)
- 2 compound symbols ($s, R_1R_2\dots R_k$)
- 3 duplicate symbols (s, P) or (s, P_1, P_2) + 3 wilds (w, P) or (w, P_1, P_2)
- 18 augmented with locations

<https://github.com/fwtompa/math tuples.git>

Converting a question to a formal query

- **Q:** Evaluate the definite integral: $\int_0^{\infty} e^{-hx^2} dx$ where $h>0$. Could someone explain to me how to solve it? I searched the internet and I found the result is $\frac{\sqrt{\pi}}{2\sqrt{h}}$ but I couldn't understand Gauss error function - that is involved in solving.
- **Tags:** calculus, integration, definite-integrals
- **Search terms:** all formulas and “mathy” words

Converting a question to a formal query


Evaluate definite integral $\int_0^\infty e^{-hx^2} dx$ h>0
explain solve searched internet
found result $\frac{\sqrt{\pi}}{2\sqrt{h}}$ Gauss
error function involved solving
calculus integration definite integrals

- **Search terms:** all formulas and “mathy” words

where $\int_0^\infty e^{-hx^2} dx \rightarrow \#(\int, v!e, n) \# (\int, \infty, a) \# (\int, n!o, b) \# (\int, [nab], -) \# (\infty, !o) \# \dots$

N.B. Unlike traditional search, query has *many* search terms!

Core engine

Adaptations: (1) recognize math tokens in minvert, and (2) use α to balance math vs. text tokens in msearch

<https://github.com/andrewrkane/mtextsearch>

Efficiency

- Indexing time

Step	Processing	Indexing Speed [†] (sec)	
1.	construct - generate corpus	46581	Python
2.	extract math tuples	15272	
3 a.	mstrip	2376	C++
3 b.	minvert	4176	
3 c.	mencode	154	

- Corpus size

Data: 15.9 GB compressed to 1.6 GB (gzip)

Index: 1.9 GB from minvert + 174 MB from mencode

- Approx. 11 seconds per query (non-optimized, exhaustive-OR)

[†] Mac OSX 10.11.6 laptop; Intel Core i7-4770HQ Processor (4 Cores 8 Threads, 2.2-3.4Ghz); 16GB RAM; 256GB flash

Answer Retrieval for Questions on Math (ARQMath) Benchmarks

	ARQMath-1 (77 topics)			ARQMath-2 (71 topics)			ARQMath-3 (78 topics)		
	nDCG'	MAP'	P'@10	nDCG'	MAP'	P'@10	nDCG'	MAP'	P'@10
MathDowsers 2023:	0.515	0.265	0.309	0.523	0.231	0.269	0.498	0.181	0.263
MathDowsers 2022:	0.511	0.261	0.307	0.510	0.223	0.265	0.474	0.164	0.247
MathDowsers 2021:	0.457	0.207	0.267	0.462	0.187	0.241	0.447	0.159	0.236
MathDowsers 2020:	0.345	0.139	0.162						
Approach 2022 (M):	0.462	0.244	0.321	0.460	0.226	0.296	0.514	0.219	0.349
MSM 2022:	0.422	0.172	0.197	0.381	0.119	0.152	0.504	0.157	0.241

- Year-over-year improvement in effectiveness
- Some unexpected deterioration in effectiveness on third benchmark

Ongoing investigation

- Natural language text
 - **Selection**: Improved keyword and keyphrase extraction
 - **Augmentation**: ChatGBT to augment query terms?
- Formulas
 - **Representation**: Extract features from Content MathML (operator tree)
 - **Features**: Select most effective features from symbol layout and operator trees
- Execution
 - **Efficiency**: Implement MaxScore dynamic pruning and split-lists
 - **Effectiveness**: Support weighted fields in documents and queries

UNIVERSITY OF
WATERLOO

DSg Data
Systems
Group

Thank You