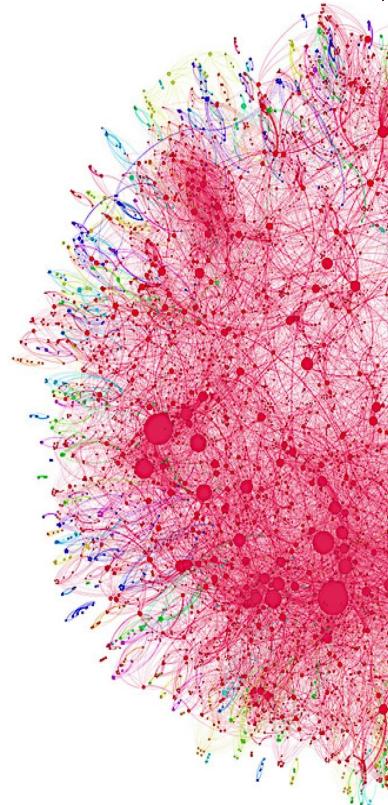


sGradd: Towards RELIABLE Stream...ing Graph Analytics

Aida Sheshbolouki

Supervisor: Prof. M. Tamer Ozsu

David R. Cheriton School of Computer Science, University of Waterloo



Graphs are everywhere!



Finance

Transportation

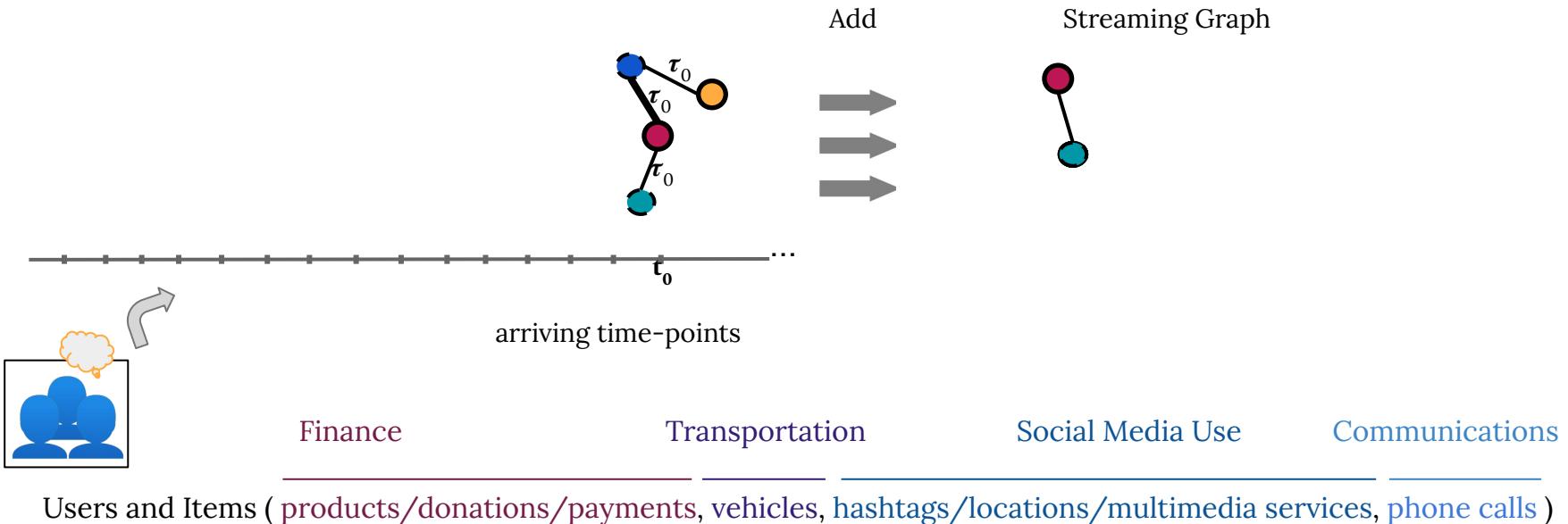
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

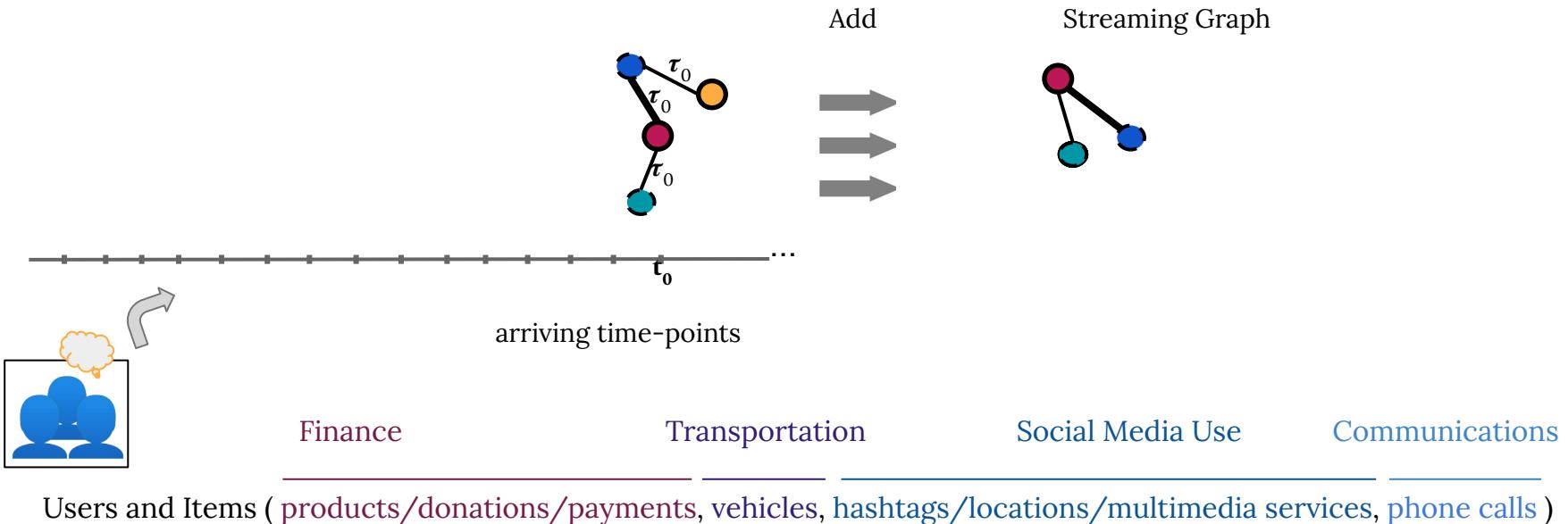
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



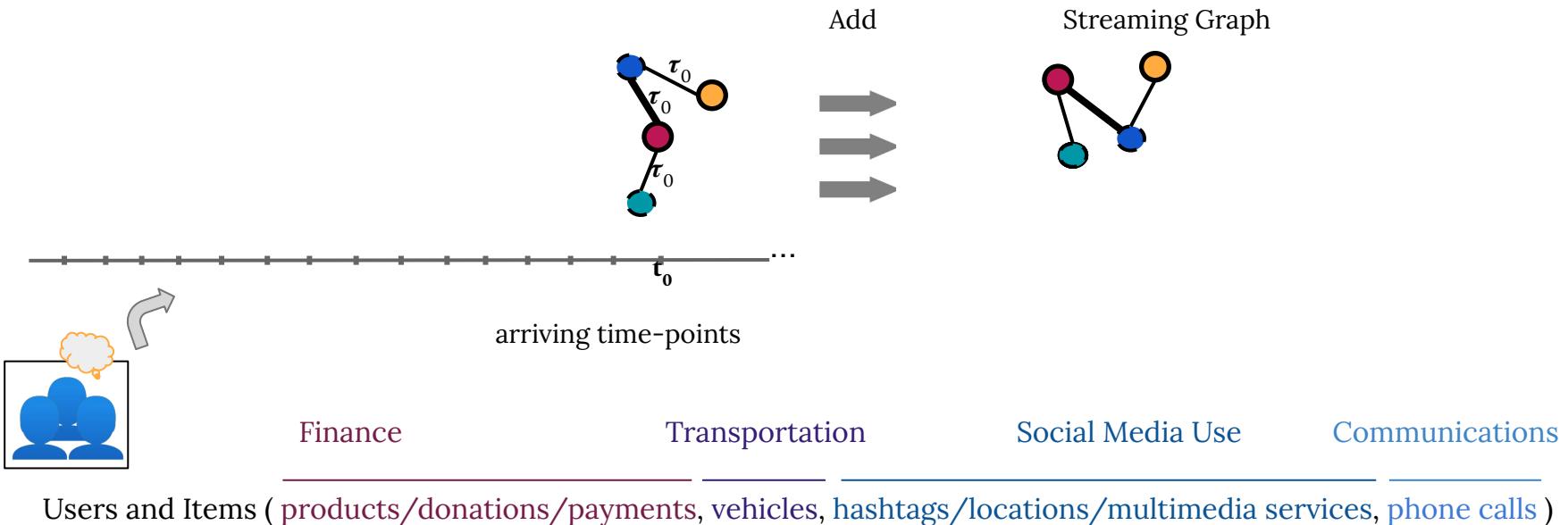
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



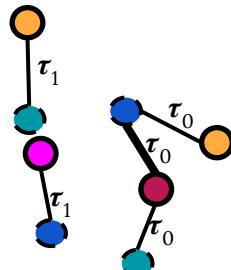
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



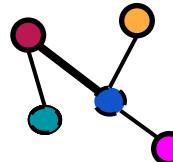
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Add

Streaming Graph



arriving time-points

Finance

Transportation

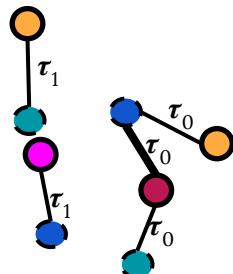
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

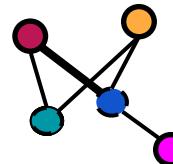
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Add

Streaming Graph



t_1 t_0 ...
arriving time-points

Finance

Transportation

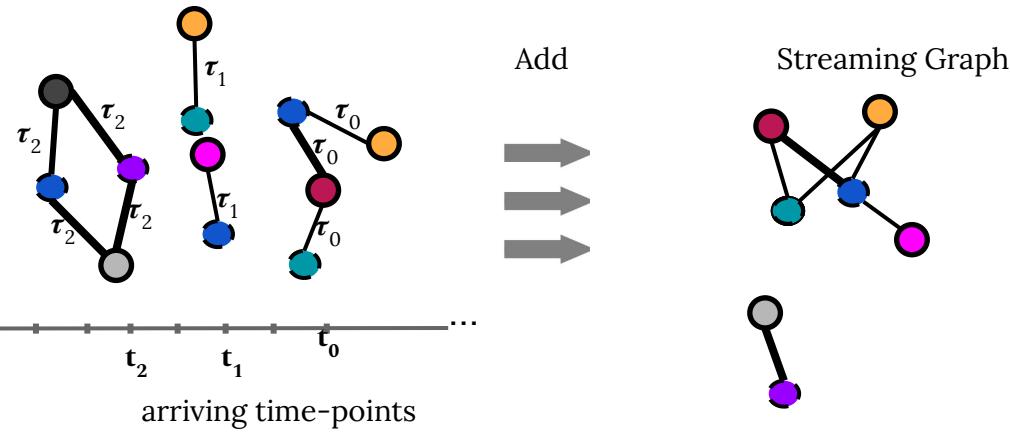
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

An unbounded stream of linked data records

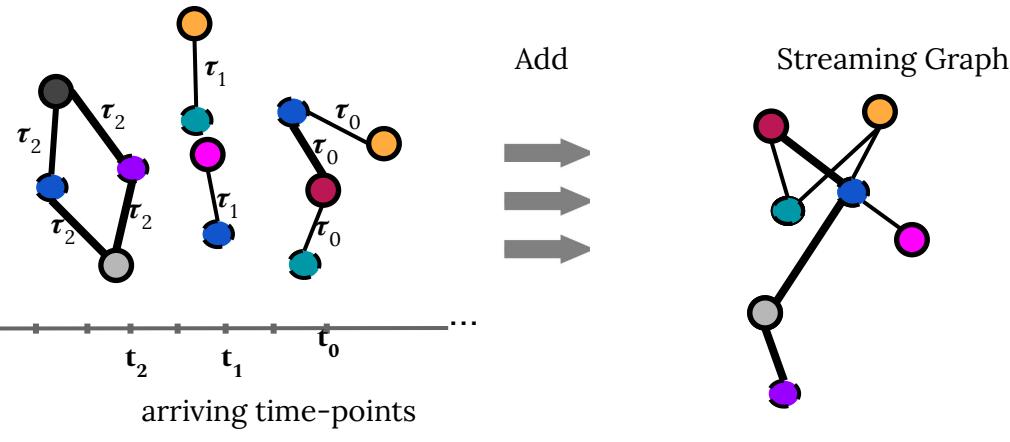
$(\textcolor{violet}{\circlearrowleft}, \textcolor{blue}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

An unbounded stream of linked data records

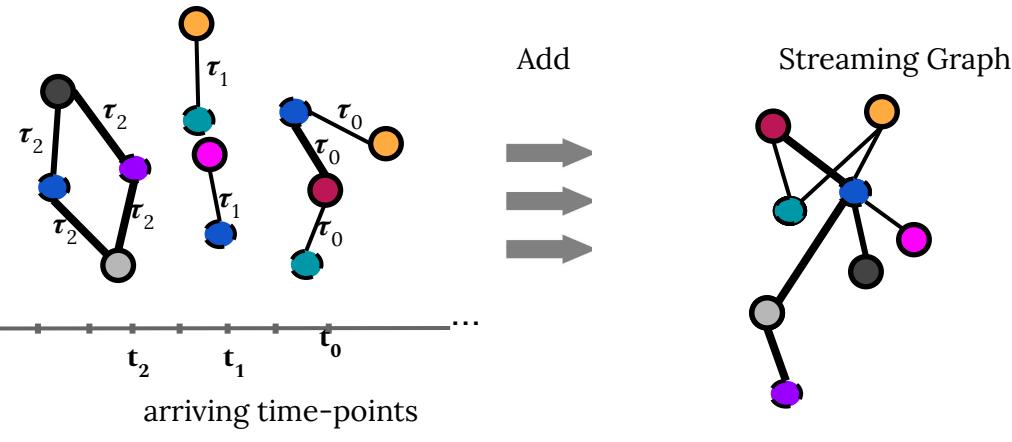
$(\textcolor{violet}{\circlearrowleft}, \textcolor{blue}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

An unbounded stream of linked data records

(, , ,)
user item weight generation timestamp



Finance

Transportation

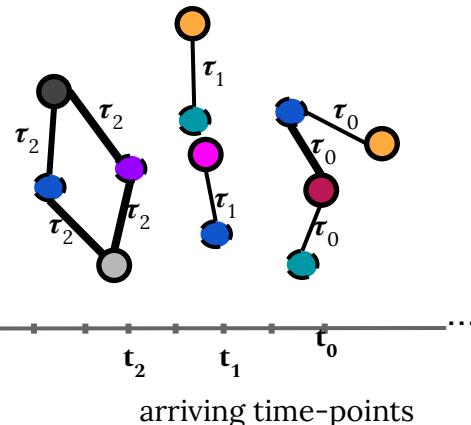
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

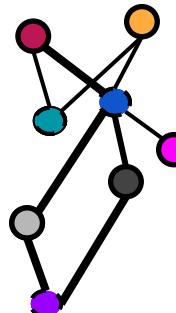
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Add

Streaming Graph



Finance

Transportation

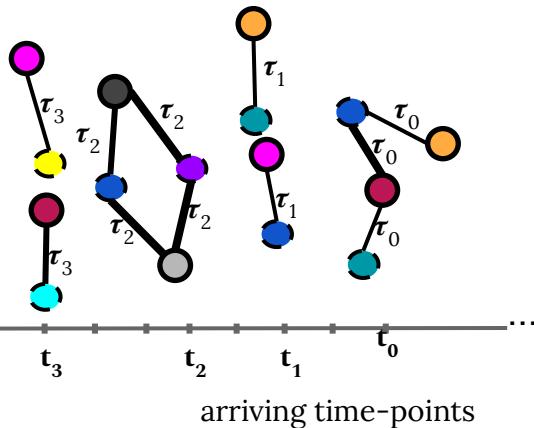
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

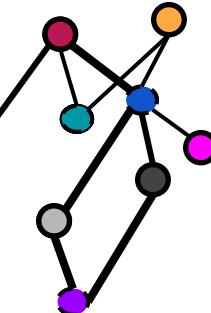
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Add

Streaming Graph



Finance

Transportation

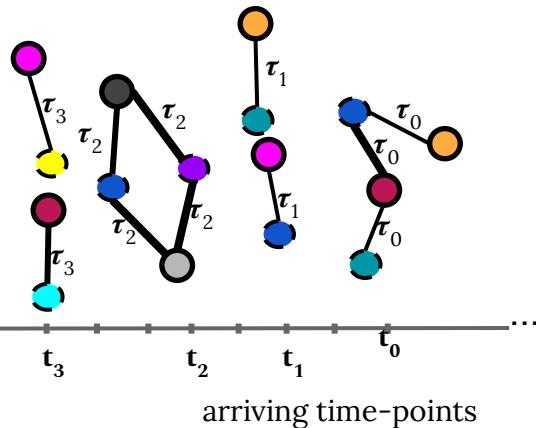
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

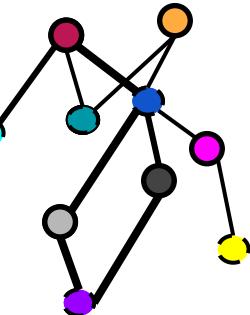
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp



Add

Streaming Graph



Finance

Transportation

Social Media Use

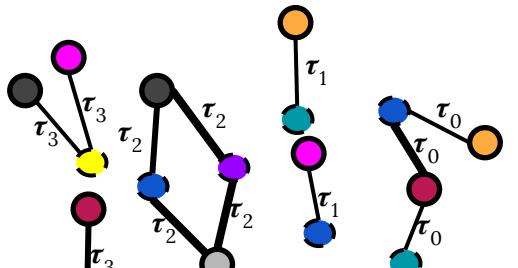
Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

An unbounded stream of linked data records

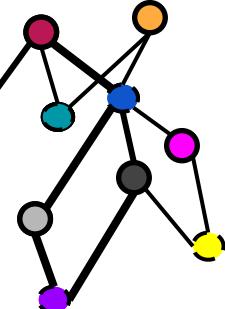
(, , , τ)

user item weight generation timestamp



Add

Streaming Graph



Finance

Transportation

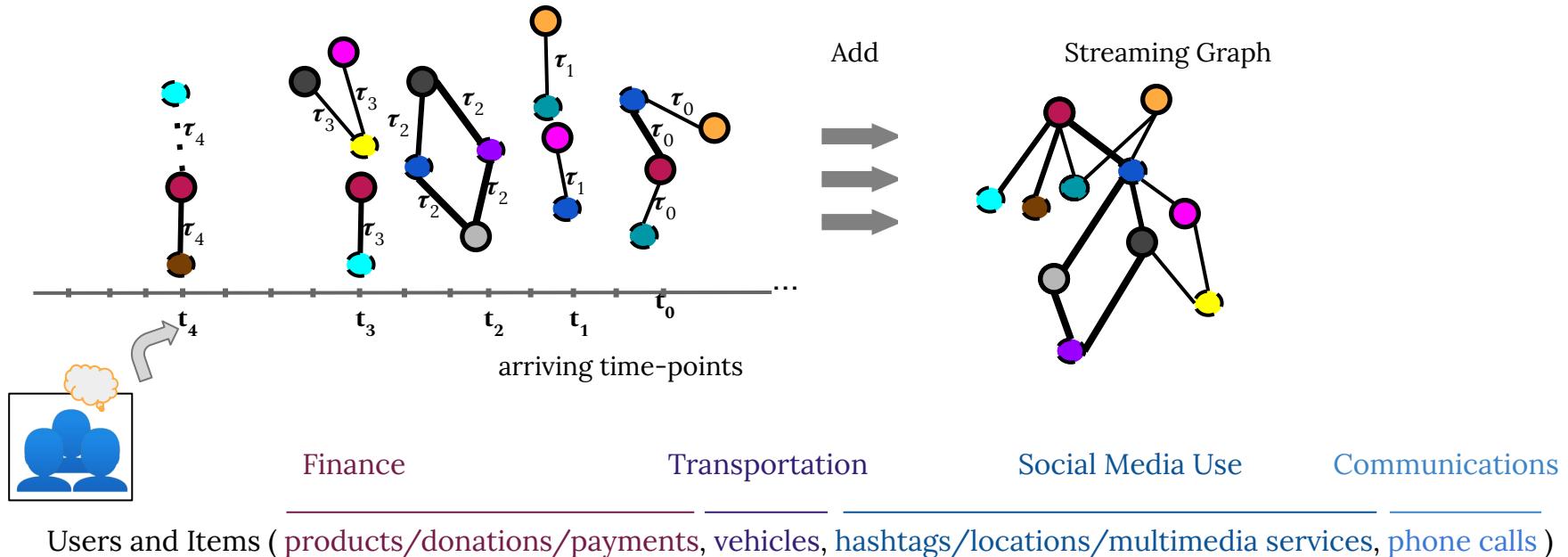
Social Media Use

Communications

Users and Items (products/donations/payments, vehicles, hashtags/locations/multimedia services, phone calls)

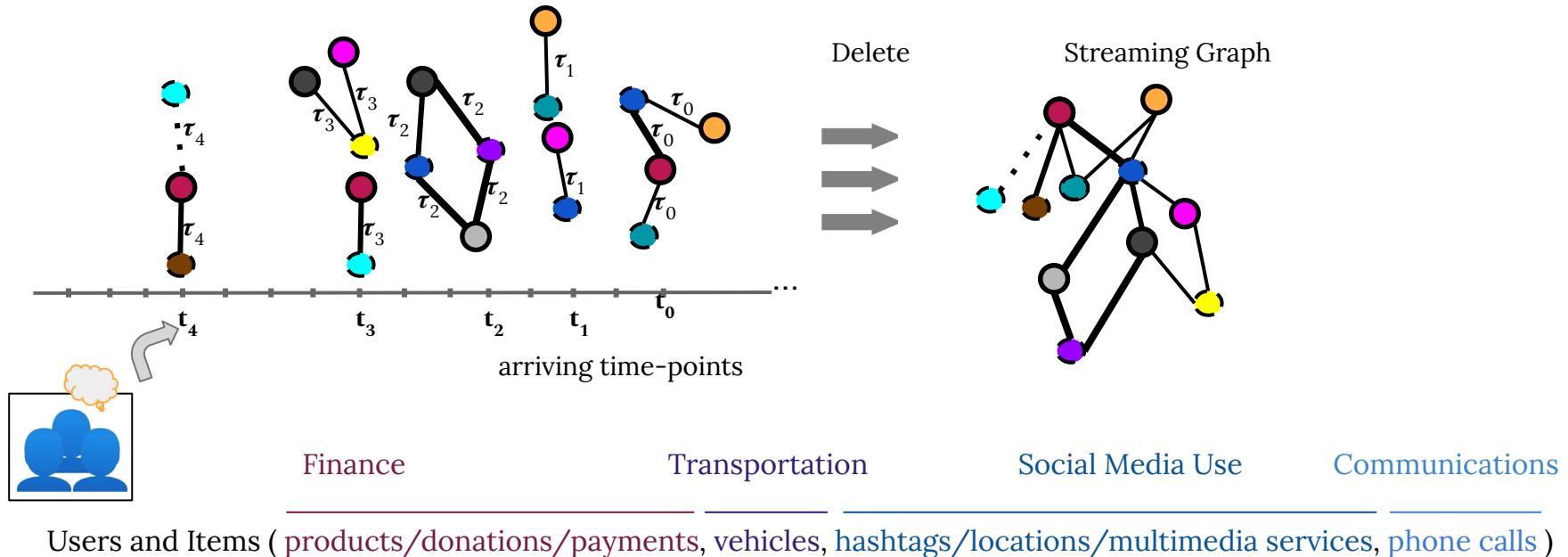
An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp

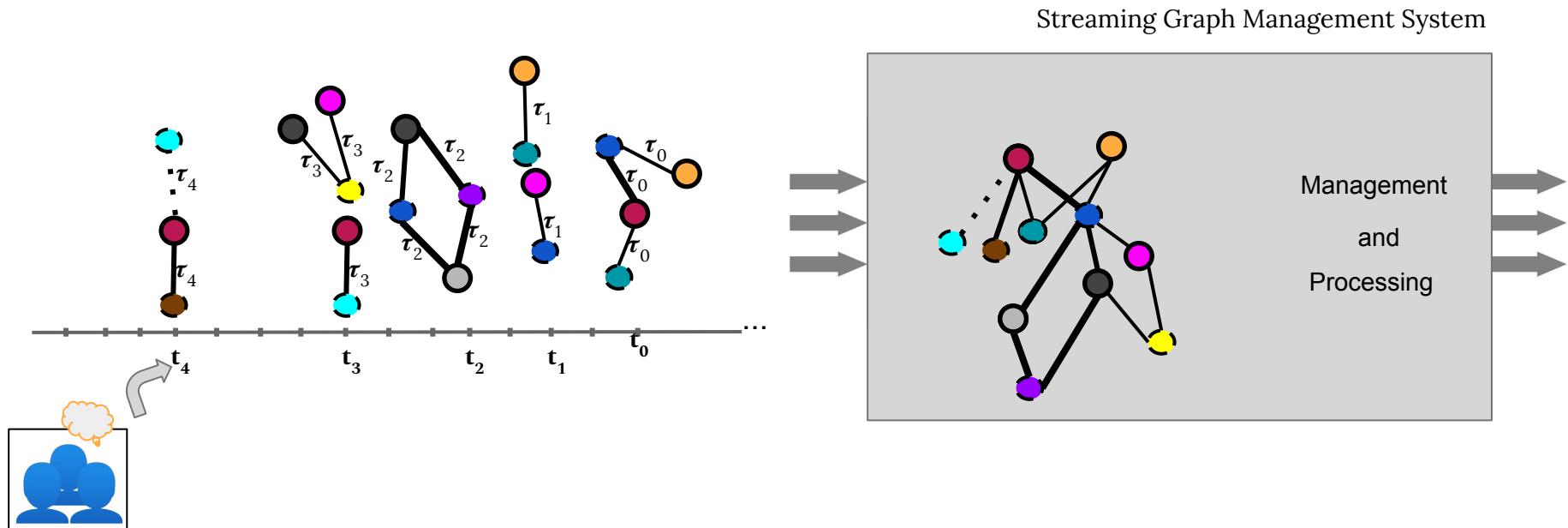


An unbounded stream of linked data records

$(\textcolor{violet}{\circlearrowleft}, \textcolor{purple}{\circ}, \textcolor{black}{\equiv}, \textcolor{teal}{\tau})$
user item weight generation timestamp

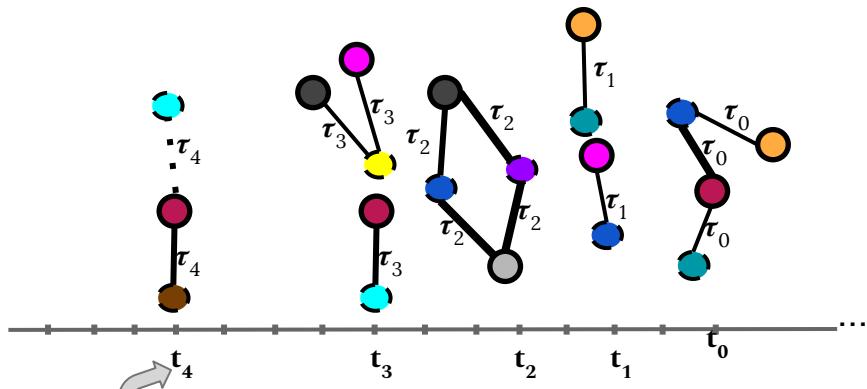
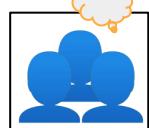
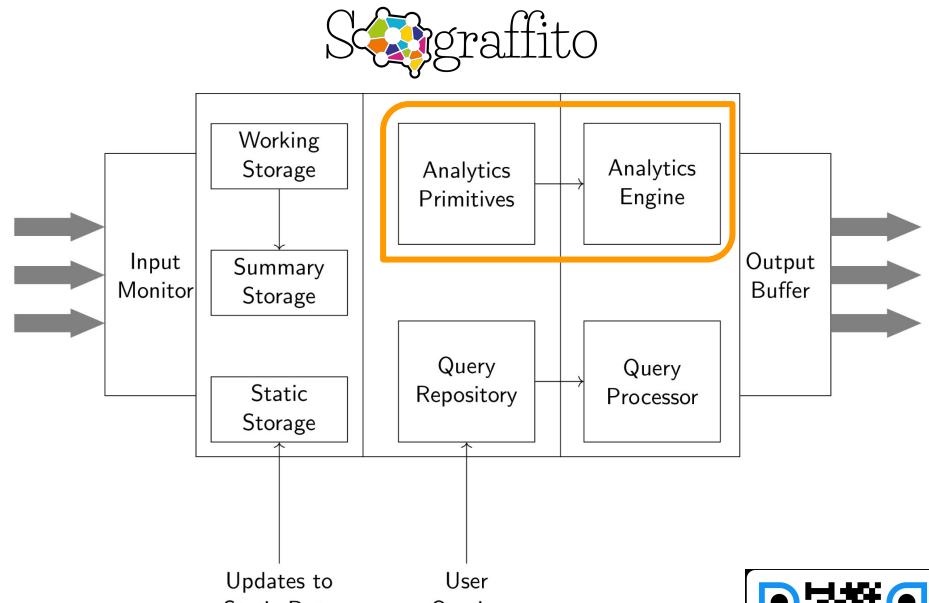


An unbounded stream of linked data records



An unbounded sequence of partially ordered **Streaming Graph** Records = $\langle r^1, r^2, \dots \rangle$

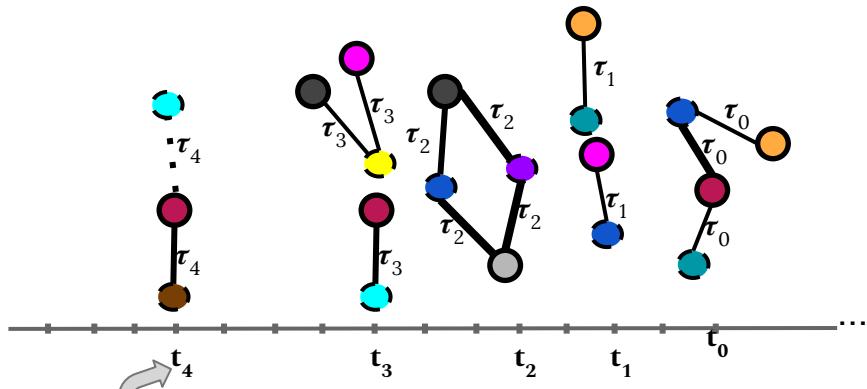
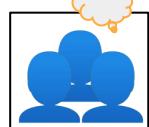
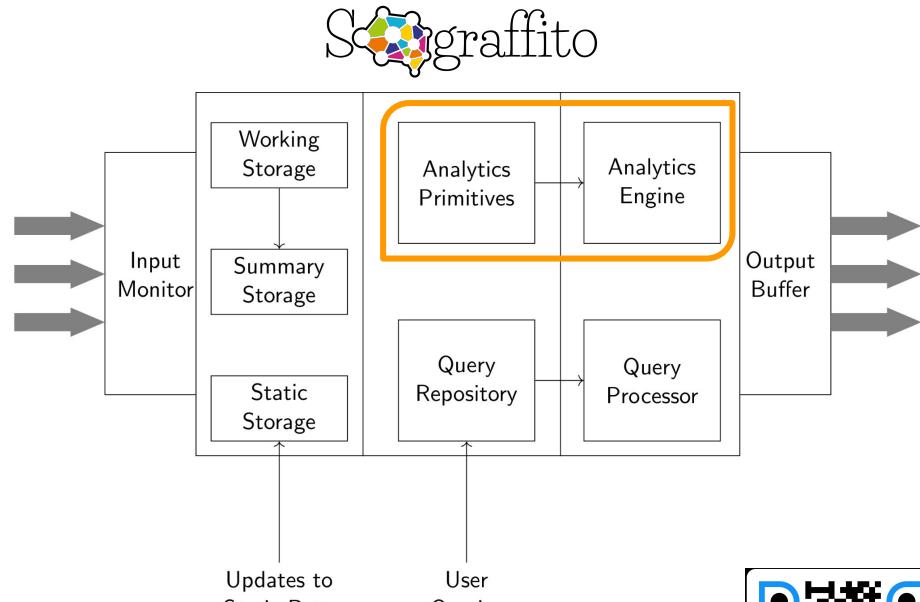
$$r^m = \langle v_i^m, v_j^m, w_{ij}^m, \tau^m \rangle, t^m \quad t^m \leq t^n \text{ for } m < n$$



- Dynamic and high volume/velocity
- Reliable output

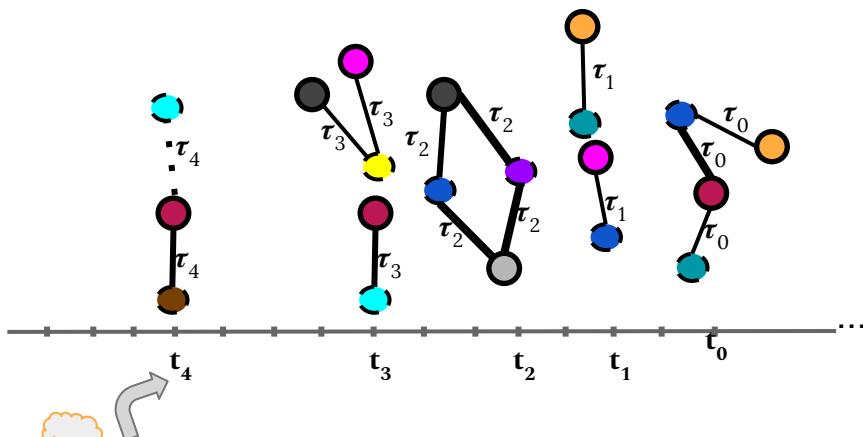
An unbounded sequence of partially ordered **Streaming Graph Records** = $\langle r^1, r^2, \dots \rangle$

$$r^m = \langle v_i^m, v_j^m, w_{ij}^m, \tau^m \rangle, t^m \quad t^m \leq t^n \text{ for } m < n$$

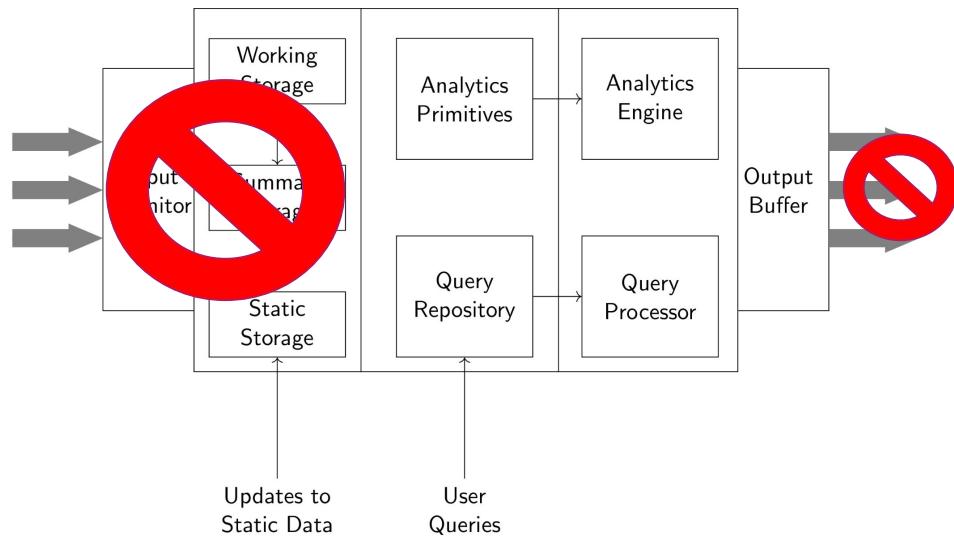


Unreliable Input + Mismanagement = Unreliable Output

→ New,
Temporal,
Incomplete, or
Adversely manipulated



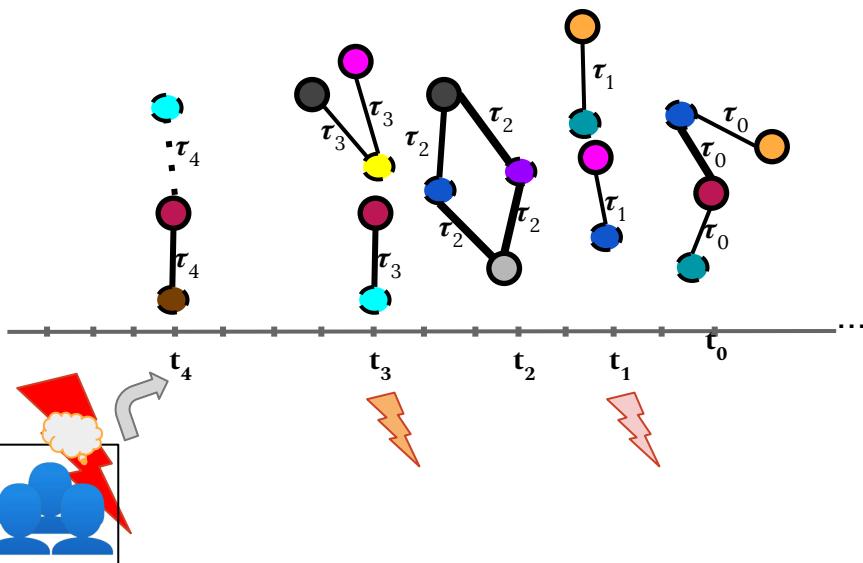
graffito



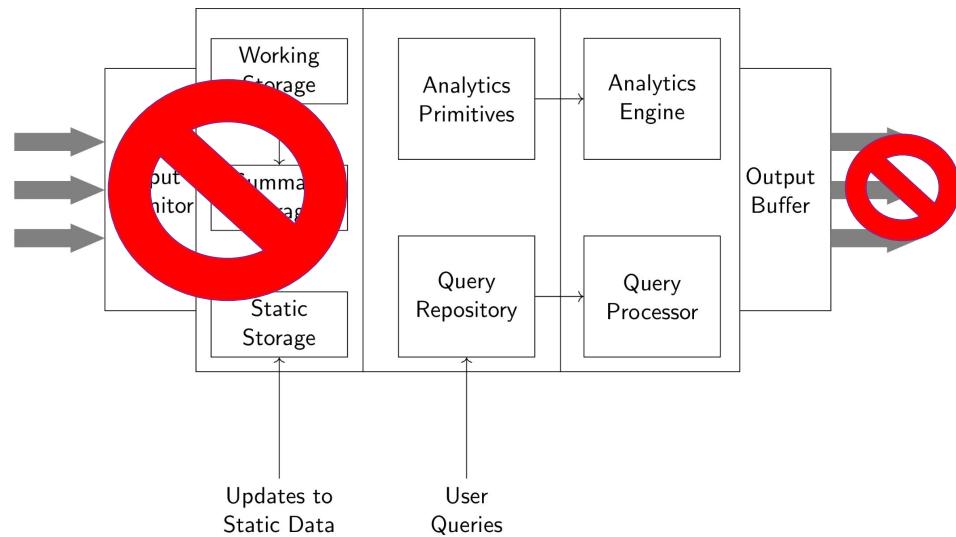
A main cause: **Concept Drift (CD)** occurs when a change in a hidden context induces changes in a target concept.

Unreliable Input + Mismanagement = Unreliable Output

→ New,
Temporal,
Incomplete, or
Adversely manipulated



Scraffito



A main cause: **Concept Drift (CD)** occurs when a change in a hidden context induces changes in a target concept.

Unreliable Input + **Drift Management** = Reliable Input

New,

Temporal,

Incomplete, or

Adversely manipulated

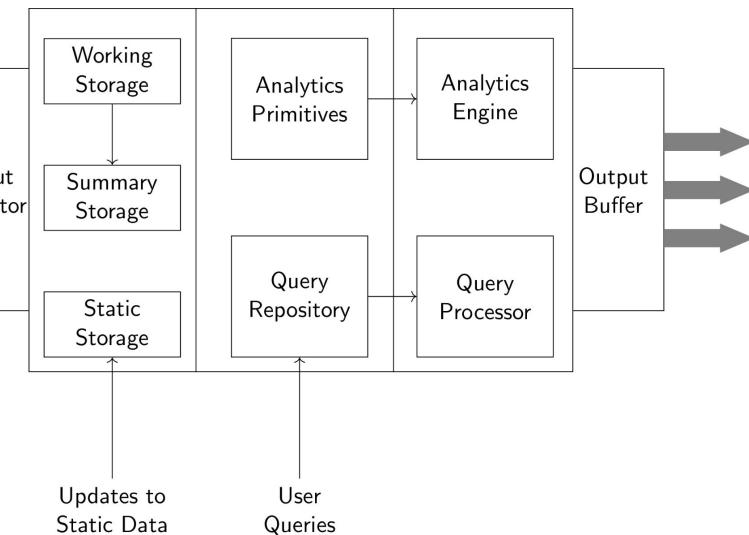
CD Understanding

CD Detection

CD Adaptation



Sograffito



How to detect concept drift in streaming graphs?

Existing Works on CD detection

Data

Sequence of independently generated data records

Sequence of attributed/labelled graph snapshots

Methods

Integrated drift detection and adaptation within supervised learners

Parameterised and static techniques

CD in Streaming Graphs

Structural pattern β refers to a quantified pattern of inter-connectivities of characteristic sub-structures (i.e. motifs) in a graph snapshot.

$$\beta(G_{W,t}) : G_{W,t} \rightarrow R$$

Transient concept refers to a non-stable structural pattern in transient data records.

$$\beta(G_{W,t}) \mid \exists (W_1, t_1), (W_2, t_2) : \beta(G_{W_1, t_1}) \neq \beta(G_{W_2, t_2})$$

Concept drift in a streaming graph is the event of a change in a transient concept over successive graph snapshots. Given a certain pattern β , concept drift can be detected when observing at least two successive windows W_1 and W_2 corresponding to sequential time points t_1 and t_2 , where $t_2 - t_1 \geq 1$ and $\beta(G_{W_1, t_1}) \neq \beta(G_{W_2, t_2})$.

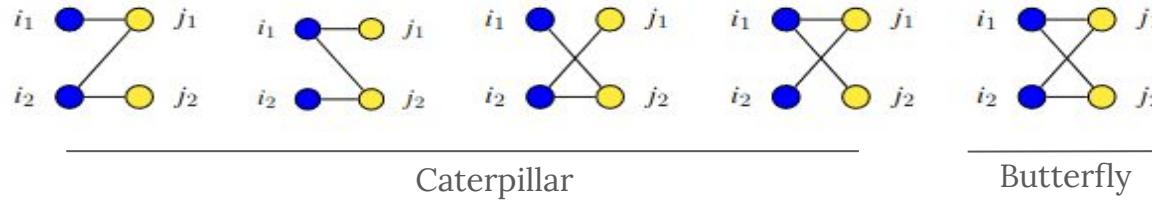
Detect changes and triggers updates

=

Concept Drift Detection

Goal

Focus on
butterflies!



A **butterfly** forms by adding a link to a caterpillar.

Mining Butterflies in Streaming Graphs

Aida Sheshbolouki (2023). UWspace

UNIVERSITY OF
WATERLOO

FACULTY OF
MATHEMATICS

Detect changes and triggers updates
=

Concept Drift Detection

Focus on
butterflies!

Goal

Stream Mining

Discover and formulate
the emergence patterns of
butterflies in streaming graphs

Mining Butterflies in Streaming Graphs

Aida Sheshbolouki (2023). UWspace

UNIVERSITY OF
WATERLOO

FACULTY OF
MATHEMATICS

Detect changes and triggers updates

=

Concept Drift Detection

Focus on
butterflies!

Goal

Graph Analytics

sGrapp: A framework for

Streaming Graph Butterfly **Approximation**

Stream Mining

Discover and formulate
the emergence patterns of
butterflies in streaming graphs

Mining Butterflies in Streaming Graphs

Aida Sheshbolouki (2023). UWspace

UNIVERSITY OF
WATERLOO

FACULTY OF
MATHEMATICS

Detect changes and triggers updates

=

Concept Drift Detection

Focus on
butterflies!

Goal

Graph Analytics

sGrapp: A framework for

Streaming Graph Butterfly **Approximation**

Stream Mining

Discover and formulate
the emergence patterns of
butterflies in streaming graphs

Explainable Modelling

sGrow: A framework for
modelling Streaming Graph **Growth**

Mining Butterflies in Streaming Graphs

Aida Sheshbolouki (2023). UWspace

UNIVERSITY OF
WATERLOO

FACULTY OF
MATHEMATICS

Detect changes and triggers updates
=

Concept Drift Detection

Focus on
butterflies!

Goal

Graph Analytics

sGrapp: A framework for

Streaming Graph Butterfly **Approximation**

sGradd: a framework for

Streaming **Graph Drift Detection**

Stream Mining

Discover and formulate
the emergence patterns of
butterflies in streaming graphs

Explainable Modelling

sGrow: A framework for
modelling Streaming Graph **Growth**

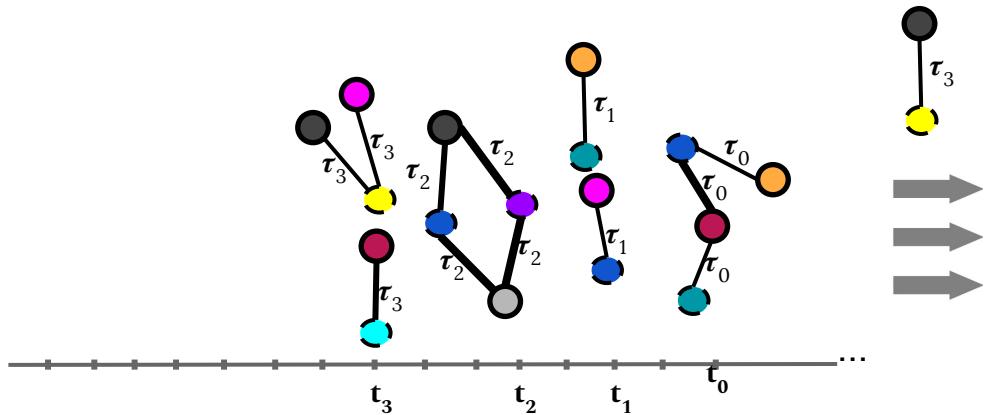
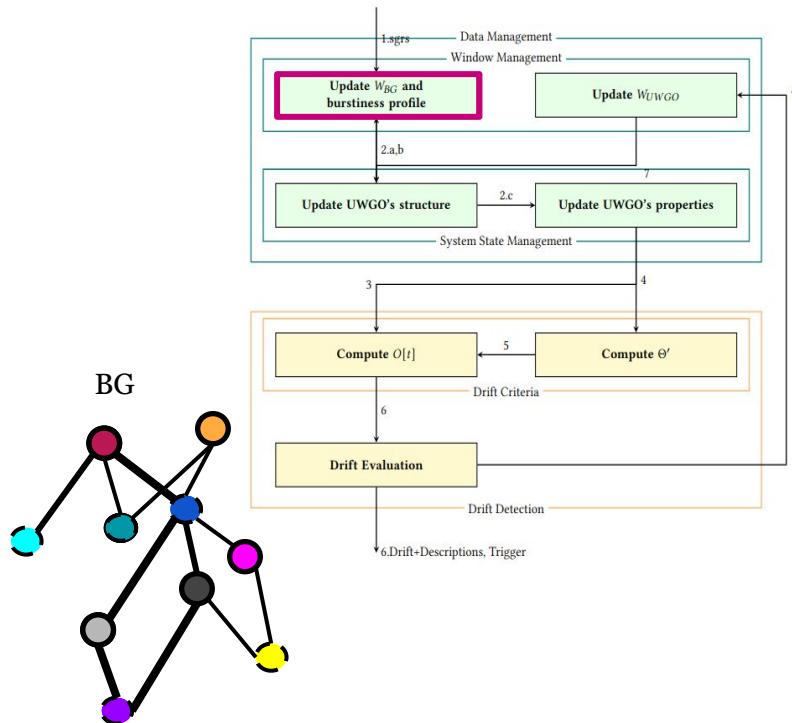
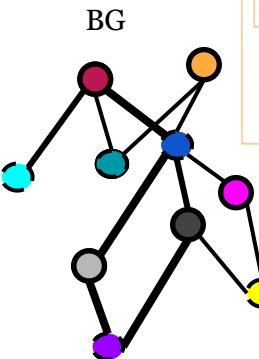
Mining Butterflies in Streaming Graphs

Aida Sheshbolouki (2023). UWspace

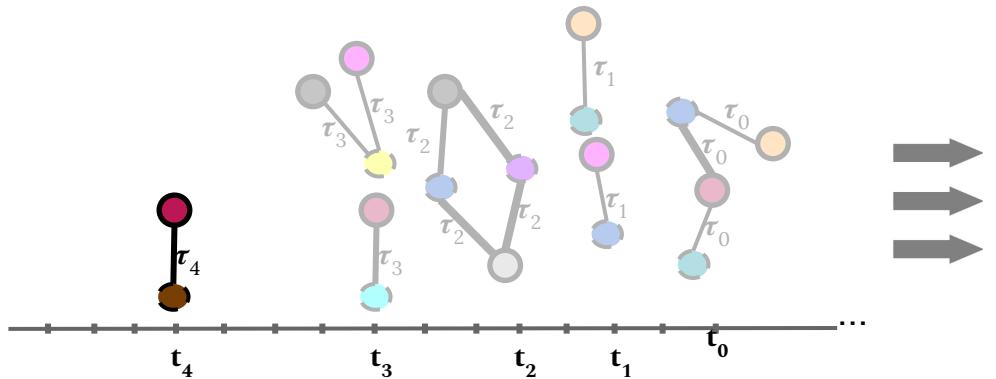
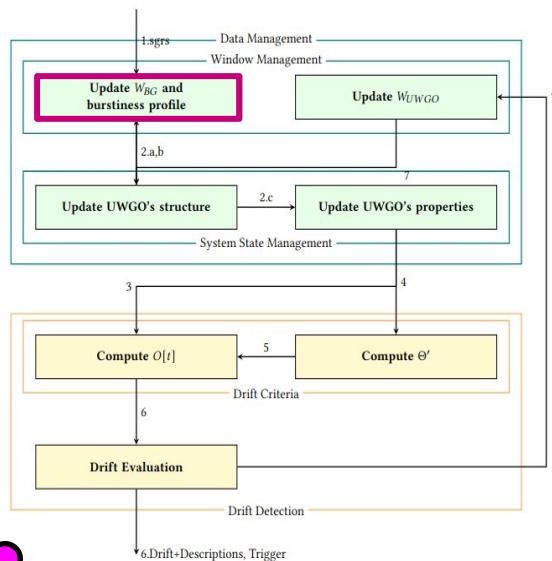
UNIVERSITY OF
WATERLOO

FACULTY OF
MATHEMATICS

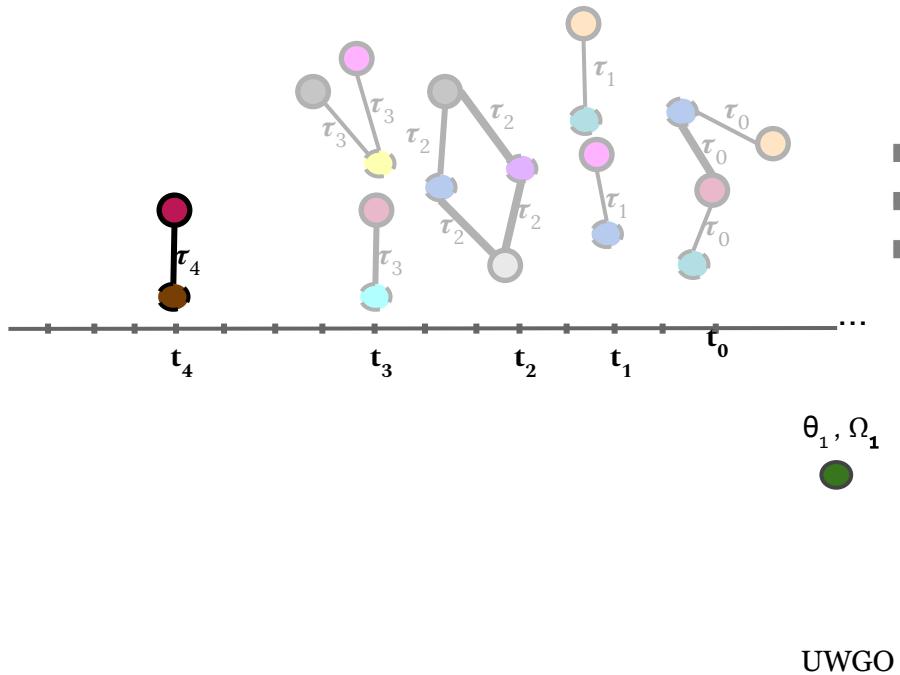
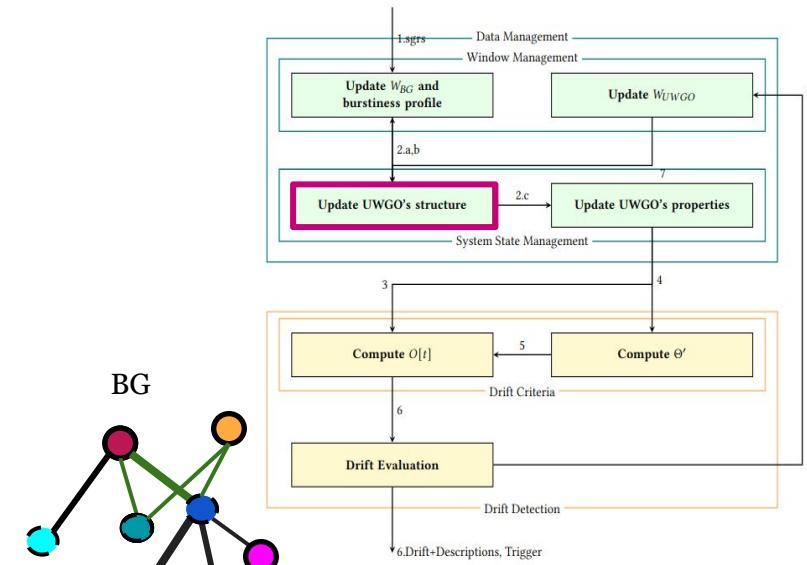
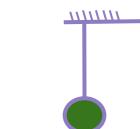
sGradd: a framework for Streaming Graph Drift Detection



sGradd: a framework for Streaming Graph Drift Detection

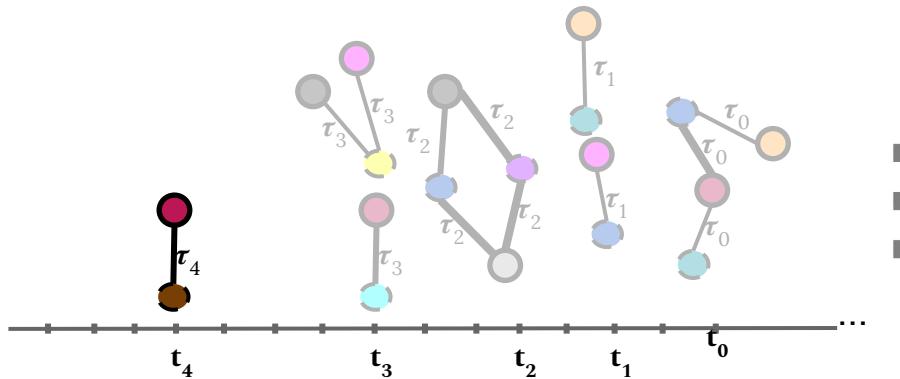
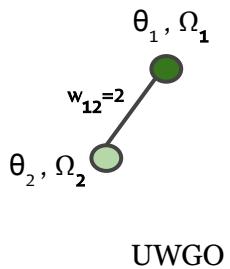
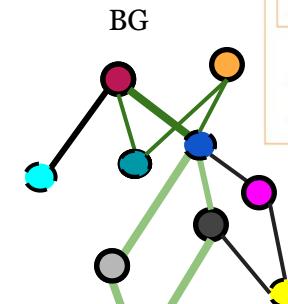
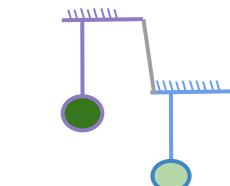
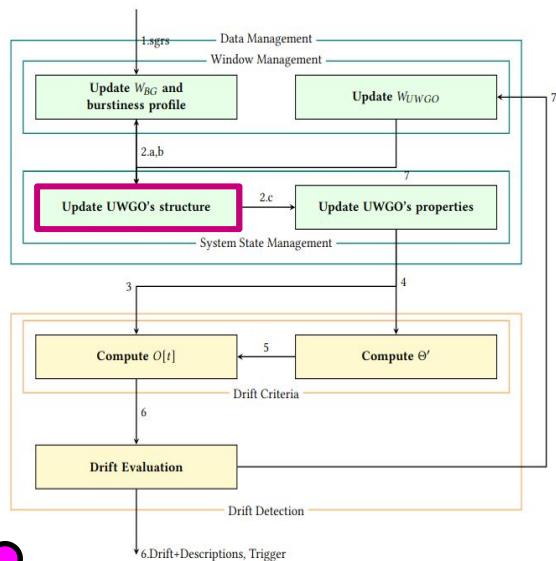


sGradd: a framework for Streaming Graph Drift Detection



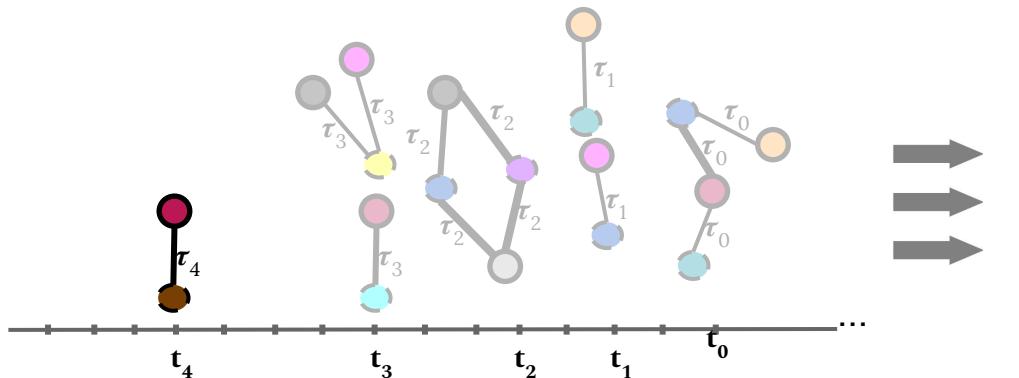
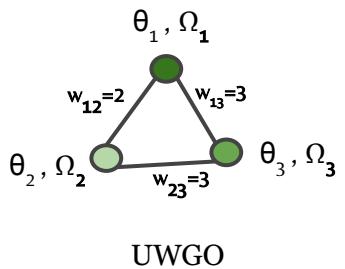
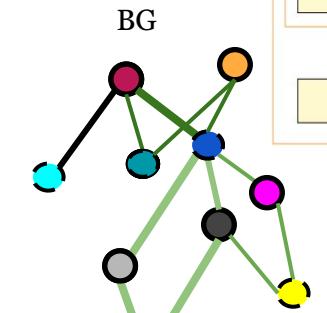
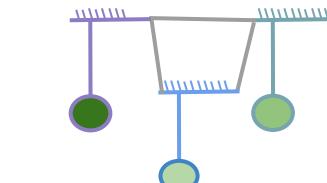
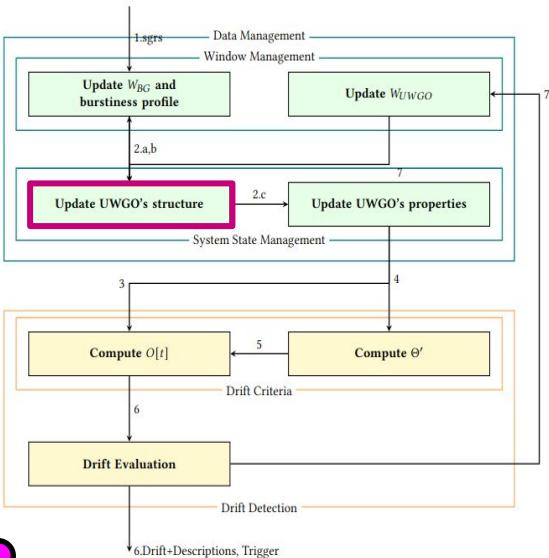
For each butterfly \bowtie_v in W_{BG}
 Create a vertex v with $\theta_v=0, \Omega_v=0$
 Connect v to n with $\bowtie_n \cap \bowtie_v \neq \emptyset$
 $W_{vn} = |N(v) \cup N(n)|$

sGradd: a framework for Streaming Graph Drift Detection



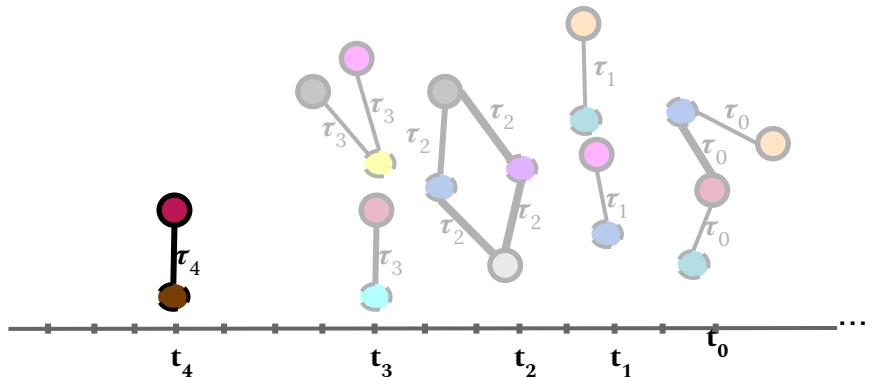
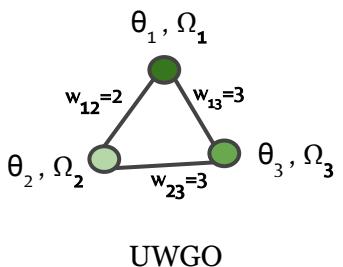
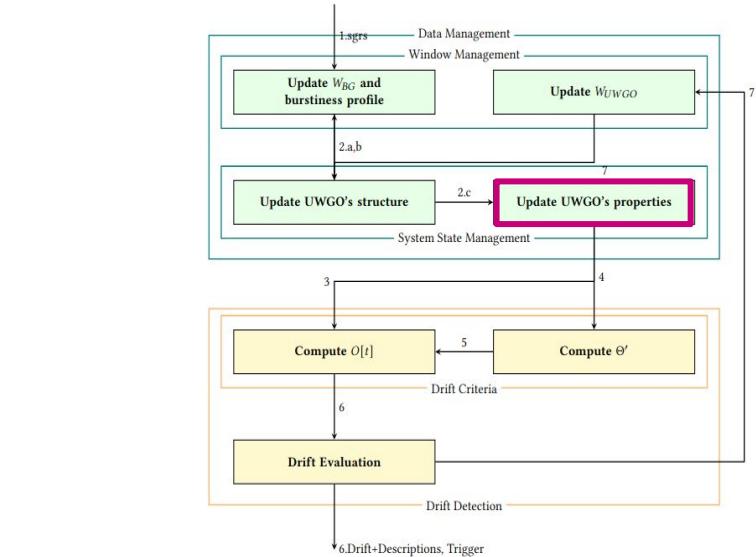
For each butterfly \bowtie_v in W_{BG}
 Create a vertex v with $\theta_v=0, \Omega_v=0$
 Connect v to n with $\bowtie_n \cap \bowtie_v \neq \emptyset$
 $W_{vn} = |N(v) \cup N(n)|$

sGradd: a framework for Streaming Graph Drift Detection

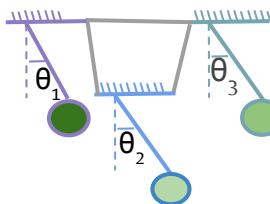


For each butterfly \bowtie_v in W_{BG}
 Create a vertex v with $\theta_v=0, \Omega_v=0$
 Connect v to n with $\bowtie_n \cap \bowtie_v \neq \emptyset$
 $W_{vn} = |N(v) \cup N(n)|$

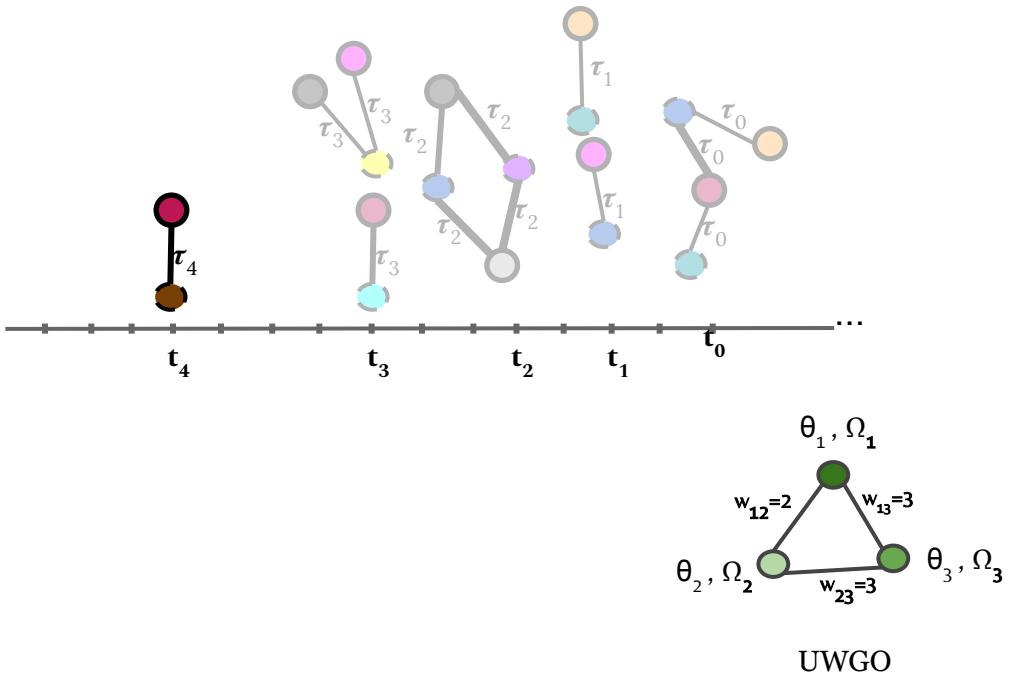
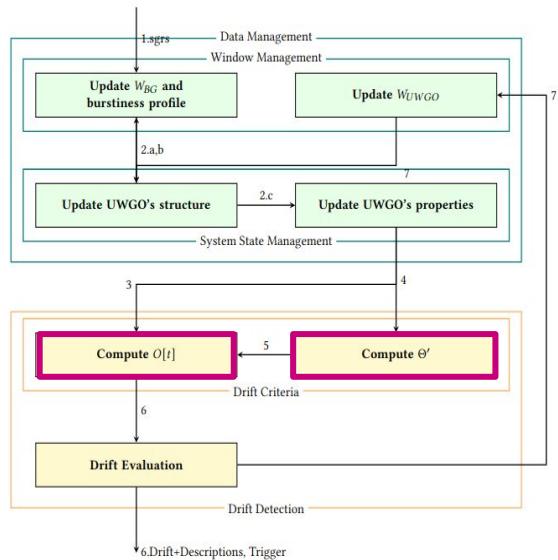
sGradd: a framework for Streaming Graph Drift Detection



For each vertex v in W_{UWGO}
 $\theta_v := (\sum_{n \in N(v)} \text{HashCode}(n)) \% 2\pi$
 $\Omega_v := \text{sample from a distribution}$



sGradd: a framework for Streaming Graph Drift Detection



Global Phase Synchronization $0 < O[t] < 1$

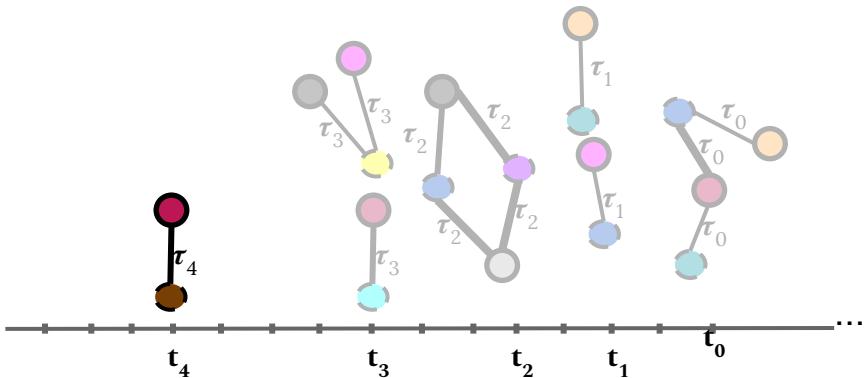
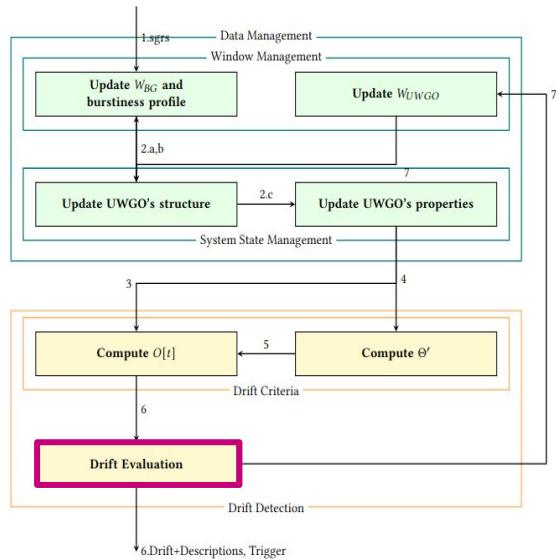
$$O_1[t_4] = \left((\sum_{v \in V} \sin \theta_v)^2 + (\sum_{v \in V} \cos \theta_v)^2 \right)^{1/2} / |V|$$

Kuramoto: $d\theta_v/dt = \Omega_v + \sum_{n \in N(v)} w_{vn} \sin(\theta_v - \theta_n)$

$\forall v \in V, \Theta_v^2 \leftarrow \text{Runge Kutta}$

$$O_2[t_4] = \left((\sum_{v \in V} \sin \theta_v^2)^2 + (\sum_{v \in V} \cos \theta_v^2)^2 \right)^{1/2} / |V|$$

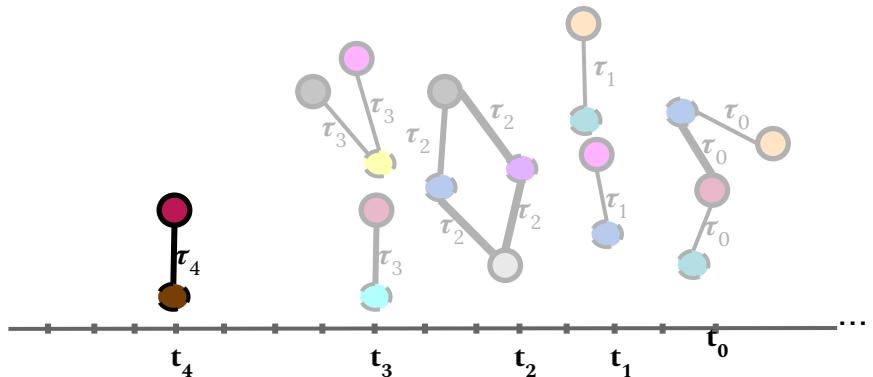
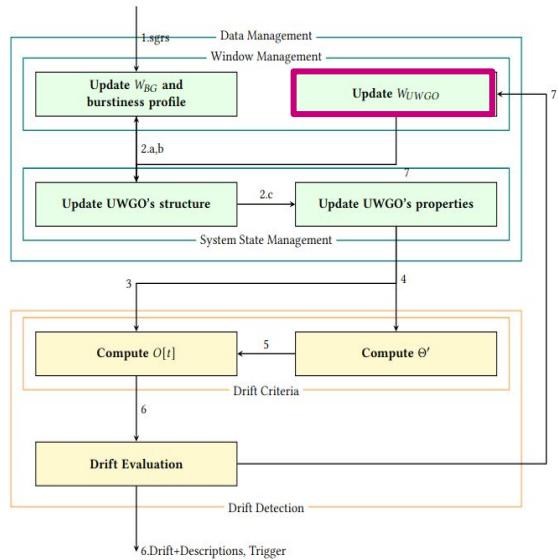
sGradd: a framework for Streaming Graph Drift Detection



Signal a drift when

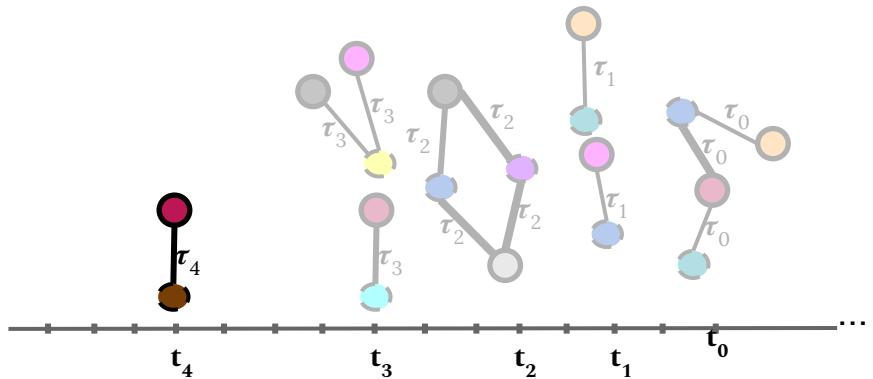
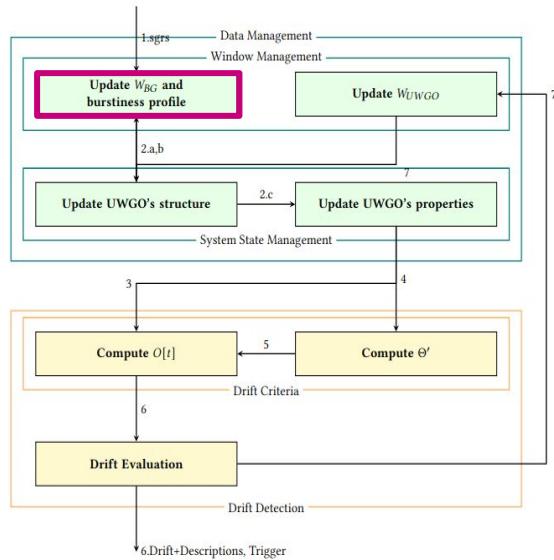
A local maximum/minimum is observed in O_2 , while O_1 remains steadily fixed.

sGradd: a framework for Streaming Graph Drift Detection



If stream is bursty,
Remove random vertices from W_{UWGO}

sGradd: a framework for Streaming Graph Drift Detection



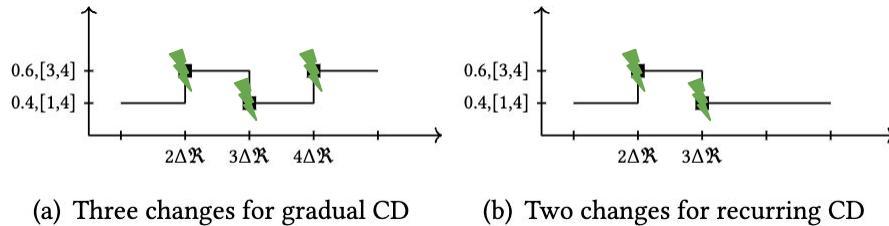
Performance Evaluation

Data: 20 labelled stream with 10^6 records $\leftarrow sGrow (G_0, M, \beta, \rho, [L_{min}, L_{max}]) + CD labels$

2 CD patterns

2 CD intervals: $\Delta R = 10^5, 2 \times 10^5$

5 instances per pattern per interval



Metrics: True/False/Miss detection rates, Detection Delay - Average over 50 executions

Computing Setup: 15.6GB native memory, Intel Core i7 - 2.6GHz*8 processor, Java

Algorithms: Three variants of CD detection module in sGradd

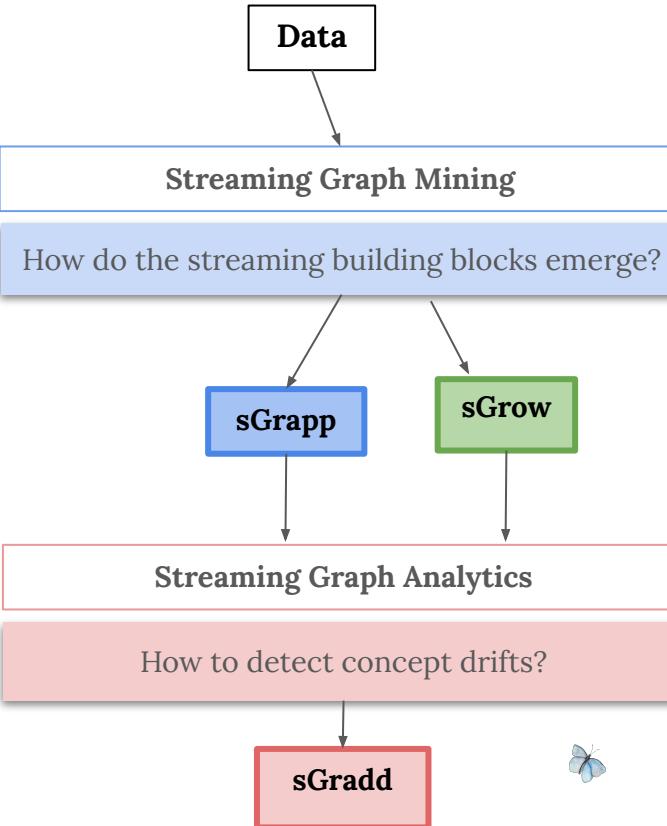
Accuracy of sGradd over streams with 2×10^5 CD interval

Latency of sGradd over streams with 2×10^5 CD interval

Accuracy and Latency of sGradd over streams with 2×10^5 CD interval

Dependency of local variables and their impact on the performance

- + Improving accuracy
- + Zero false alerts
- + Average detection delay in [9, 373] & [5, 310] (s) for close and far drift intervals



A composable framework for streaming graph drift detection which

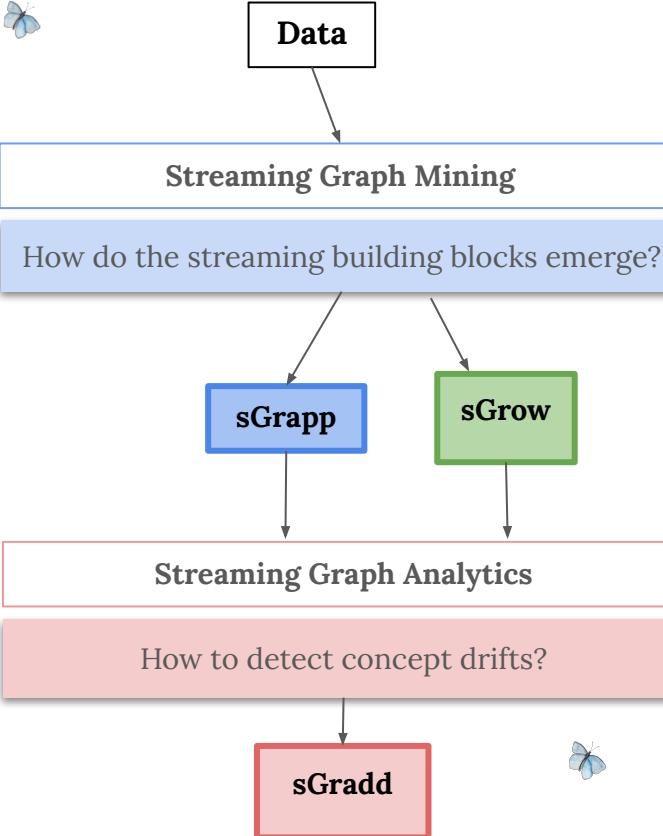
- supports any analytics (supervised or unsupervised),
- incurs low overhead, while accurately detecting the drifts,
- detects various drift types,
- explains the detected drifts' time and location,
- detects drifts without supervision,
- adapts to the streaming rate, and
- does not require input thresholds, prototype parameters, and graph attributes.

A performance evaluation which

- simulates concept drift realistically
- examines the accuracy and latency of detections effectively

Thank you

aida.sheshbolouki@uwaterloo.ca

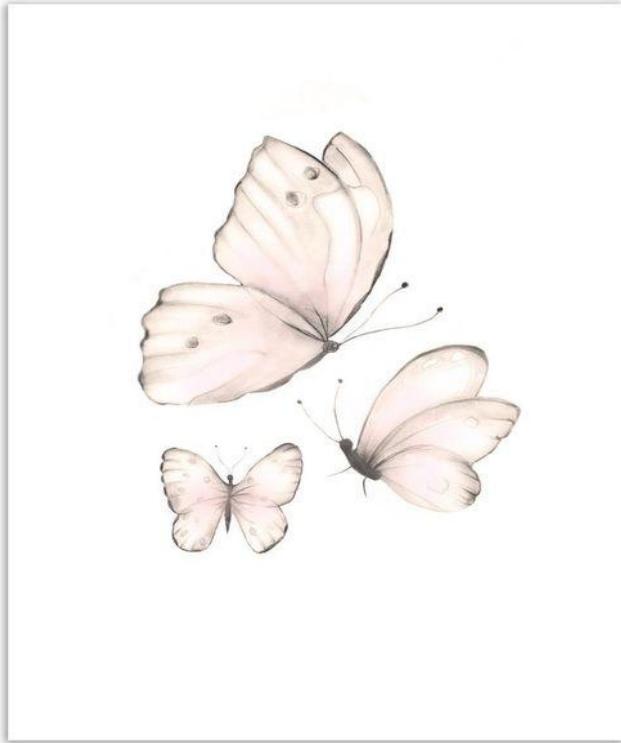


A composable framework for streaming graph drift detection which

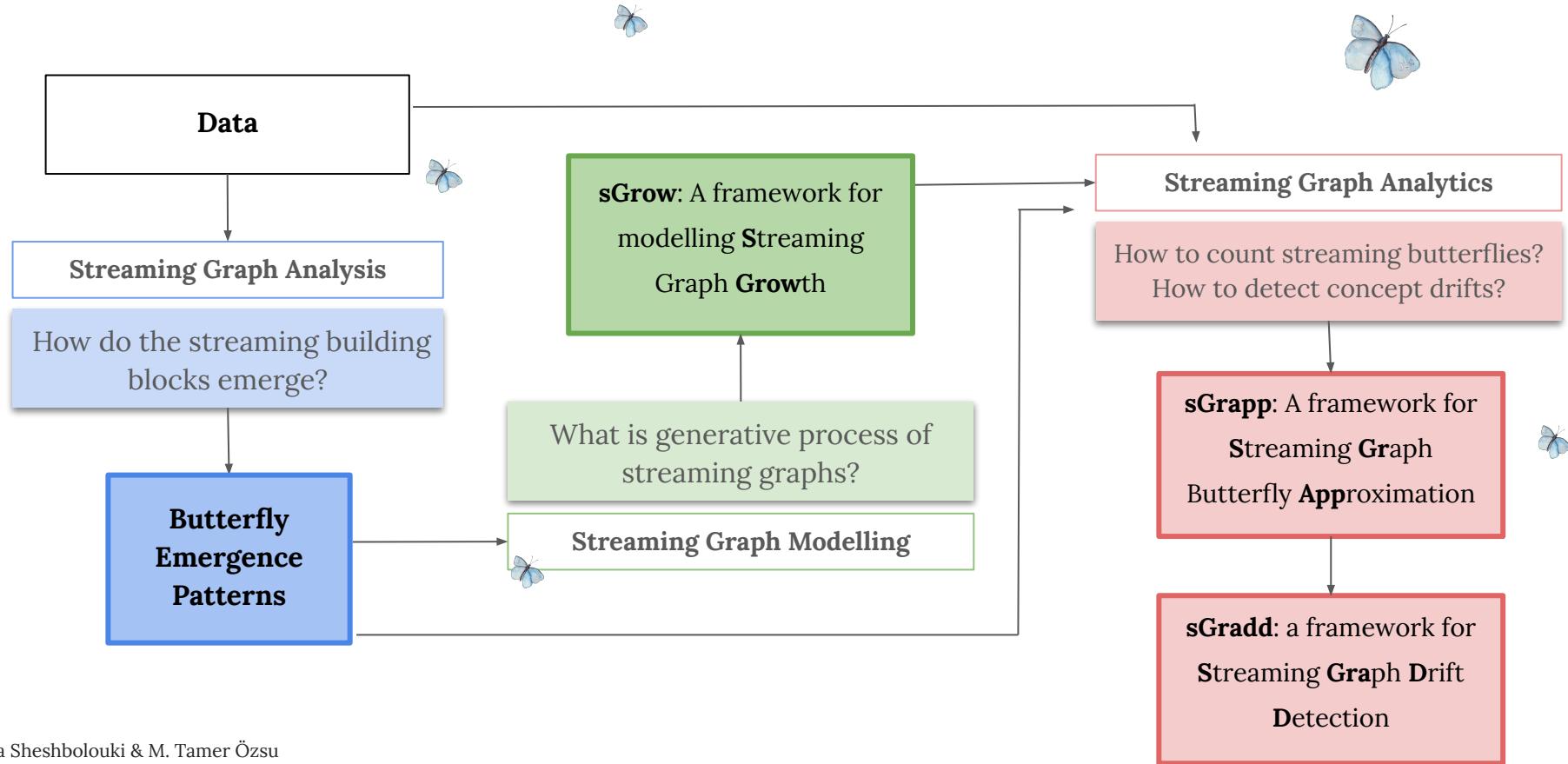
- supports any analytics (supervised or unsupervised),
- incurs low overhead, while accurately detecting the drifts,
- detects various drift types,
- explains the detected drifts' time and location,
- detects drifts without supervision,
- adapts to the streaming rate, and
- does not require input thresholds, prototype parameters, and graph attributes.

A performance evaluation which

- simulates concept drift realistically
- examines the accuracy and latency of detections effectively



Supporting Material



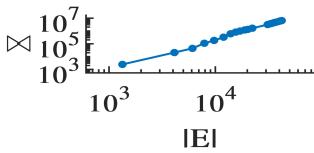
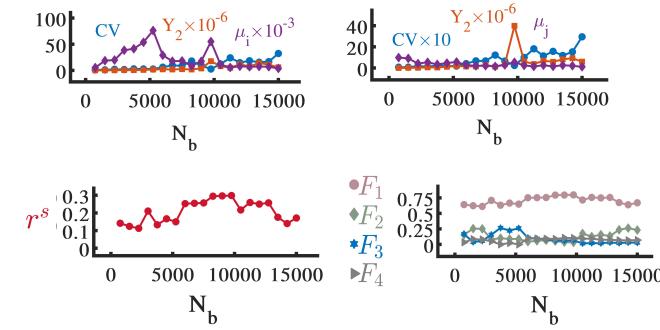
Aida Sheshbolouki & M. Tamer Özsü

"sGrapp: Butterfly approximation in streaming graphs." ACM Transactions on Knowledge Discovery from Data 16.4 (2022): 1-43.

"sGrow: Explaining the Scale-Invariant Strength Assortativity of Streaming Butterflies." ACM Transactions on the Web (2022).

Stream Mining

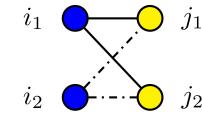
Discover and formulate the emergence patterns of butterflies in streaming graphs



Statistical Graph Analysis

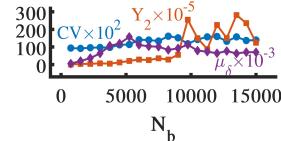
Tools and techniques:

- A butterfly counting algorithm for static graph snapshots
- A metric for evaluating data distribution within/across streams
- Window management techniques for stream mining



Butterfly emergence patterns:

- *Butterfly Densification Power Law*: Bursty butterfly formation and its origins
- *Scale-Invariant Strength Assortativity of Butterflies*: Butterfly mixing patterns



Scale-Invariant Strength Assortativity of Butterflies

Butterfly densification

The number of butterflies grows over time and at each time point it is a super-linear function of the number of edges.

Diversification of strengths

The distribution of strengths gets broader and more diverse over time.

Steady strength assortativity

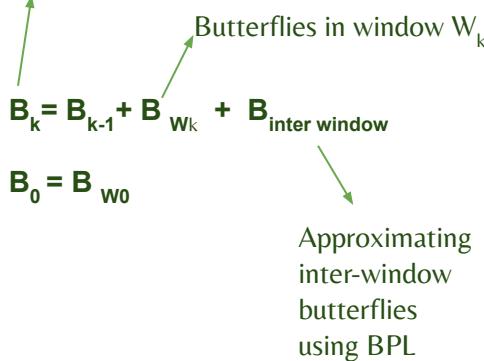
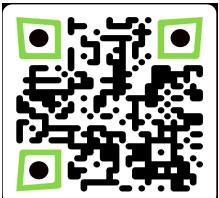
The strength assortativity coefficient is fixed at a positive value over time due to the fixed-shaped yet growing distribution of strength-difference.

While the new high-strength vertices with low strength-neighbors form butterflies and the variance of strength differences increases with the arrival new vertices and edges, the majority of butterflies are formed by vertices with similar strength. We refer to this phenomenon as the scale-invariant strength assortativity.

Graph Analytics

sGrapp: A framework for Streaming
Graph Butterfly Approximation

Total butterflies until the
end of window W_k



Aida Sheshbolouki & M. Tamer Özsü

"sGrapp: Butterfly approximation in streaming graphs."

ACM Transactions on Knowledge Discovery from Data 16.4 (2022): 1-43.

Data-driven approach for subgraph listing

Benefits study of cohesion for

- **Marketing.** Finding groups of similar entities and recommendations
- **Information management/monitoring.** Analyzing information propagation
- **Health care.** Dynamic phenomena such as epidemic spreading

Incremental processing powered by:

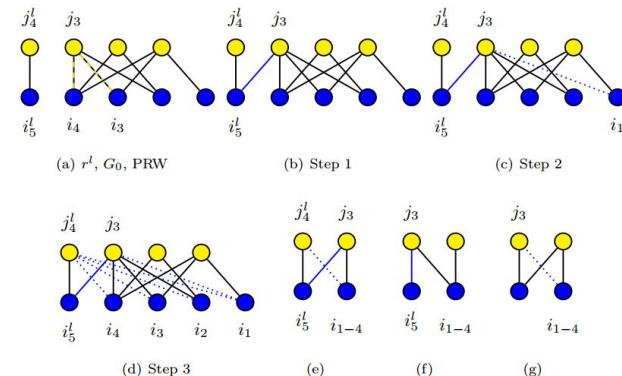
- Butterfly densification power law (BPL) for approximation
- Identifying performance bottlenecks: inter-window butterflies
- Window management adaptive to streaming rate

Performance:

- Simultaneous effectiveness and efficiency
- 160x higher throughput and 0.02x lower estimation error than baselines
 - average window errors <0.05 and 0.14 in streams with uniform and non-uniform temporal distributions
 - processing throughput of 1.5×10^6 data record per second

Explainable Modelling

sGrow: A framework for modelling
Streaming Graph **Growth**



Micro-mechanisms for explaining the discovered patterns

A graph traversal approach: preferential random walk

- Selecting nodes according to their weighted degree (strength preferential selection)
- Breadth-First and Depth-First traversals
- Dynamic and random number of visited nodes

Realistic streaming record generation

- Inactivity gaps
- Timestamp assignment
- Evolving streaming rate
- Local and unbounded graph updates

Probabilistic connections

- Random nodes
- Neighbour copying

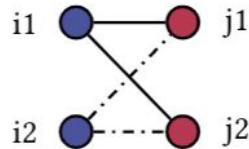
Performance:

- Robust and efficient realization of streaming growth patterns
- Independent of initial conditions, scale and temporal characteristics, and model configurations.

Listing the butterflies in sequence of burst-based

graph snapshots of the stream:

sGrapp's core algorithm



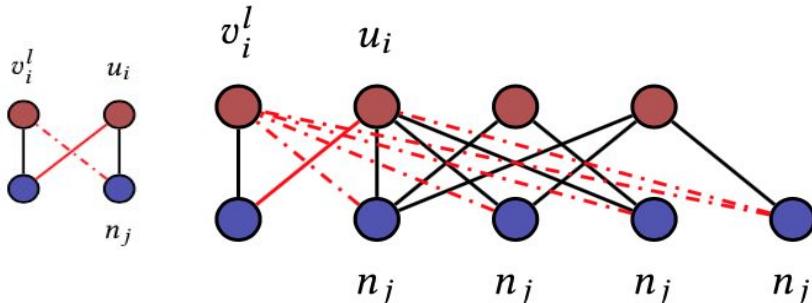
Algorithm 1: countButterflies(G)

Input: $G = \langle V_i \cup V_j, E_{ij} \rangle$, static graph

Output: B_G , The number of butterflies in G

```
1 Butterflies  $\leftarrow \emptyset$  // An empty hashSet of quadruples
2 jNeighbors  $\leftarrow \emptyset$  // An empty Set
3 vi2s  $\leftarrow \emptyset$  // An empty Set
4 /* loop over  $v_{i1} \in V_i$  if  $K_i < K_j$ , otherwise loop over  $v_{j1} \in V_j$  */
5 for  $v_{i1} \in V_i$  do
6   jNeighbors  $\leftarrow N_{v_{i1}}$  // j-neighbors of vertex  $v_{i1}$ 
7   for  $index1 \in [1, size(jNeighbors)]$  do
8      $v_{j1} \leftarrow jNeighbors[index1]$ 
9     for  $index2 \in [index1 + 1, size(jNeighbors)]$  do
10        $v_{j2} \leftarrow jNeighbors[index2]$ 
11       vi2s  $\leftarrow N_{v_{j1}} \cap N_{v_{j2}}$  // common i-neighbors
12       Butterflies.add( $[v_{i1}, v_{j1}, v_{i2}, v_{j2}]$ )
13
14 12  $B_G \leftarrow size(Butterflies)$ 
```

Explaining the Scale-invariant strength assortativity of butterflies: sGrow's algorithms



Algorithm 4: Add Burst

```

1 Function addBurst( $v_i^l, v_j^l, PRW_i, G, \mathfrak{R}, \rho$ )
2   for each  $u_i \in PRW_i$  do
3     |Ni(ui)|-caterpillars in butterflies
4       Add a new sgr  $\langle u_i, v_j^l, \omega', v_j^l, \tau \rangle$  to  $\mathfrak{R}$  and  $G$ 
5       if  $\text{coin}(\rho)$  is Head then
6          $z_j \leftarrow$  Select a random j-vertex
7          $\omega' \leftarrow$  a random integer in  $[1, 5]$ 
8         Add a new sgr  $\langle u_i, z_j, \omega', \text{Min}(u_i.\tau, z_j.\tau) \rangle$  to  $\mathfrak{R}$  and  $G$ 
9       for each  $n_j \in N_j(u_i)$  do                                // in bursty streams with  $b > 2$ 
10      if  $\text{coin}(\rho)$  is Head then
11         $\omega' \leftarrow$  a random integer in  $[1, 5]$ 
12        Add a new sgr  $\langle v_i^l, n_j, \omega', n_j, \tau \rangle$  to  $\mathfrak{R}$  and  $G$ 

```

Algorithm 1: Graph Model

```

Input:  $\rho$ : connection probability,  $M$ : number of isolated edges,  $\beta$ : slide parameter,
 $[L_{min}, L_{max}]$ : PRW's length range
Output:  $\mathfrak{R}$ , sequence of streaming graph records
1  $G \leftarrow G_0 = (V_0, E_0)$                                          // computational graph
2  $\mathfrak{R} \leftarrow E_0$                                                  // sequence of sgrs
3  $\tau \leftarrow 1$  last timestamp in  $G_0$                                 // timestamp
4  $t \leftarrow 0$                                                        // timestep
5  $W^b \leftarrow$  first timestamp in  $G_0$                                 // sliding window's beginning border
6 while true do
7    $t \leftarrow t + 1$ 
8   Add  $m \in [0, M]$  new sgrs  $r^{l=0, \dots, m}$  to  $\mathfrak{R}$  and  $G$ 
9   for each  $r^{l=0, \dots, m} = \langle v_i^l, v_j^l, \omega_{ij}^l, \tau \rangle$  do
10     $\omega \leftarrow$  a random integer in  $[-1, 5]$ 
11    switch  $\omega$  do
12      case -1 do
13        Remove any edge between  $v_i^l$  and  $v_j^l$  from  $\mathfrak{R}$  and  $G$ .
14      case 0 do
15        No operation
16      otherwise do
17         $init_j \leftarrow SPS(V_j)$ 
18         $L \leftarrow$  a random integer in  $[L_{min}, L_{max}]$ 
19         $(PRW_i, PRW_j) \leftarrow PRW(init_j, \text{false}, G, L)$ 
20        addBurst( $v_i^l, v_j^l, PRW_i, G, \mathfrak{R}, \rho$ )
21        addBurst( $v_i^l, v_j^l, PRW_j, G, \mathfrak{R}, \rho$ )
22         $\tau \leftarrow \tau + \frac{(\omega'-5)(\omega'-4)(\omega'-3)}{2}$ 
23   Remove any newly added vertex  $v_i^l$  and  $v_j^l$  with less than 2 neighbors from  $G$ 
24    $\tau \leftarrow \tau + 1$ 
25    $W^b \leftarrow W^b + \beta$ 
26   if  $t = \beta$  then
27     Remove any edge with timestamp less than  $W^b$  from  $G$ 
28    $t \leftarrow 0$ 

```