
1/16

Do Programming Languages needQuery Languages?

Jelle Hellings

Department of Computing and Software

McMaster University

1280 Main St. W., Hamilton, ON L8S 4L7, Canada

2/16

Do Programming Languages needQuery Languages?

(spoiler alert)

Yes they do!

3/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

3/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

Examples: standard support libraries

1. Collections to store data

binary search trees, hash tables, tuples, dynamic arrays,

2. Algorithms to operate on data

sorting, filtering, transforming, set operations,

3/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

Working Draft of the C++ standard

(Document Number: N4964, Date 2023-10-15.)

C++ standard

2005 pages

1443 pages (71%)

658 pages (33%)

Not counting: numeric, time, formatting, IO, threads,

3/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

Working Draft of the C++ standard

(Document Number: N4964, Date 2023-10-15.)

standard support libraries

2005 pages

1443 pages (71%)

658 pages (33%)

Not counting: numeric, time, formatting, IO, threads,

3/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

Working Draft of the C++ standard

(Document Number: N4964, Date 2023-10-15.)

collections &

algorithms

2005 pages

1443 pages (71%)

658 pages (33%)

Not counting: numeric, time, formatting, IO, threads,

4/16

An example: How to program relational algebra in C++

Data storage: std::tuple (single row), std::set (rows).

▶ Projection (πcolumns): std::transform.

▶ Selection (σconditions): std::copy_if, std::views::filter.

▶ Joins (×, ⋊⋉): loops, std::views::cartesian_product.

▶ Set operations (∩, ∪, \): std::set_union,

▶ Sorting: std::sort, std::stable_sort.
▶ Deduplication: std::unique_copy.
▶ Aggregation: std::accumulate and std::reduce, std::ranges::fold_left.

▶ Parallelization: execution policies (algorithms), std::async (evaluation),

▶ Pipelined execution: std::ranges, coroutines using std::generator,

4/16

An example: How to program relational algebra in C++

Data storage: std::tuple (single row), std::set (rows).

▶ Projection (πcolumns): std::transform.

▶ Selection (σconditions): std::copy_if, std::views::filter.

▶ Joins (×, ⋊⋉): loops, std::views::cartesian_product.

▶ Set operations (∩, ∪, \): std::set_union,

▶ Sorting: std::sort, std::stable_sort.
▶ Deduplication: std::unique_copy.
▶ Aggregation: std::accumulate and std::reduce, std::ranges::fold_left.

▶ Parallelization: execution policies (algorithms), std::async (evaluation),

▶ Pipelined execution: std::ranges, coroutines using std::generator,

4/16

An example: How to program relational algebra in C++

Data storage: std::tuple (single row), std::set (rows).

▶ Projection (πcolumns): std::transform.

▶ Selection (σconditions): std::copy_if, std::views::filter.

▶ Joins (×, ⋊⋉): loops, std::views::cartesian_product.

▶ Set operations (∩, ∪, \): std::set_union,

▶ Sorting: std::sort, std::stable_sort.
▶ Deduplication: std::unique_copy.
▶ Aggregation: std::accumulate and std::reduce, std::ranges::fold_left.

▶ Parallelization: execution policies (algorithms), std::async (evaluation),

▶ Pipelined execution: std::ranges, coroutines using std::generator,

4/16

An example: How to program relational algebra in C++

Data storage: std::tuple (single row), std::set (rows).

▶ Projection (πcolumns): std::transform.

▶ Selection (σconditions): std::copy_if, std::views::filter.

▶ Joins (×, ⋊⋉): loops, std::views::cartesian_product.

▶ Set operations (∩, ∪, \): std::set_union,

▶ Sorting: std::sort, std::stable_sort.
▶ Deduplication: std::unique_copy.
▶ Aggregation: std::accumulate and std::reduce, std::ranges::fold_left.

▶ Parallelization: execution policies (algorithms), std::async (evaluation),

▶ Pipelined execution: std::ranges, coroutines using std::generator,

4/16

An example: How to program relational algebra in C++

Data storage: std::tuple (single row), std::set (rows).

▶ Projection (πcolumns): std::transform.

▶ Selection (σconditions): std::copy_if, std::views::filter.

▶ Joins (×, ⋊⋉): loops, std::views::cartesian_product.

▶ Set operations (∩, ∪, \): std::set_union,

▶ Sorting: std::sort, std::stable_sort.
▶ Deduplication: std::unique_copy.
▶ Aggregation: std::accumulate and std::reduce, std::ranges::fold_left.

▶ Parallelization: execution policies (algorithms), std::async (evaluation),

▶ Pipelined execution: std::ranges, coroutines using std::generator,

4/16

An example: How to program relational algebra in C++

πR.parent(σR.child=S.name(ρR(parentOf)× σ
S.place=“Hamilton”

(ρS(person))))

using namespace std::views;

auto where_pred = [](auto l) { return l.place == "Hamilton"; };

auto product_pred = [](auto t) {
auto [po, p] = t; return po.child == p.name; };

auto join = cartesian_product(parents, persons | filter(where_pred));
for (auto [po, p] : join | filter(product_pred)) {

std::cout << po.parent << std::endl;
}

4/16

An example: How to program relational algebra in C++

πR.parent(σR.child=S.name(ρR(parentOf)× σ
S.place=“Hamilton”

(ρS(person))))

using namespace std::views;

auto where_pred = [](auto l) { return l.place == "Hamilton"; };

auto product_pred = [](auto t) {
auto [po, p] = t; return po.child == p.name; };

auto join = cartesian_product(parents, persons | filter(where_pred));
for (auto [po, p] : join | filter(product_pred)) {

std::cout << po.parent << std::endl;
}

5/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

2. Programming languages are bad at data processing.

Efficient data processing

“Complex” data processing algorithms even for simple data processing tasks.

E.g., join algorithms, join ordering, index usage, selection push down,

This complexity is delegated to the programmer.

5/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

2. Programming languages are bad at data processing.

Efficient data processing

“Complex” data processing algorithms even for simple data processing tasks.

E.g., join algorithms, join ordering, index usage, selection push down,

This complexity is delegated to the programmer.

6/16

An example: A more-efficient query in C++

/* parents is a set, ordered on (parent, child).
* persons is a set, ordered on (name, place). */

auto where_pred = [](auto l) { return l.place == "Hamilton"; };
auto filtered = persons | filter(where_pred)

| std::ranges::to<std::vector>();

for (auto& [pname, cname] : parents) {
person_t pcname, "Hamilton";
bool has_child = std::binary_search(filtered.begin(),

filtered.end(), p);
if (has_child) {
std::cout << pname << std::endl;

}
}

6/16

An example: A more-efficient query in C++

/* parents is a set, ordered on (parent, child).
* persons is a set, ordered on (name, place). */

for (auto& [pname, cname] : parents) {
person_t pcname, "Hamilton";
bool has_child = persons.contains(p);
if (has_child) {
std::cout << pname << std::endl;

}
}

6/16

An example: A more-efficient query in C++

Runtime complexity Memory usage

Original Θ(|parents| · |persons|) Θ(1)
First variant Θ(|parents| log |filtered|+ |persons|) Θ(|filtered|)
Second variant Θ(|parents| log |persons|) Θ(1)

Both “improved” versions can be significantly improved to reduce overheads!

What if we want unique parents?

6/16

An example: A more-efficient query in C++

Runtime complexity Memory usage

Original Θ(|parents| · |persons|) Θ(1)
First variant Θ(|parents| log |filtered|+ |persons|) Θ(|filtered|)
Second variant Θ(|parents| log |persons|) Θ(1)

Both “improved” versions can be significantly improved to reduce overheads!

What if we want unique parents?

7/16

An example: A more-efficient query in SQL

SELECT pname
FROM parents R, persons S
WHERE R.child = S.name AND S.place = "Hamilton";

Some database systems need a helping hand. . .

SELECT DISTINCT pname
FROM parents
WHERE child IN (SELECT name

FROM persons
WHERE place = "Hamilton");

7/16

An example: A more-efficient query in SQL

SELECT DISTINCT pname
FROM parents R, persons S
WHERE R.child = S.name AND S.place = "Hamilton";

Some database systems need a helping hand. . .

SELECT DISTINCT pname
FROM parents
WHERE child IN (SELECT name

FROM persons
WHERE place = "Hamilton");

7/16

An example: A more-efficient query in SQL

SELECT DISTINCT pname
FROM parents R, persons S
WHERE R.child = S.name AND S.place = "Hamilton";

Some database systems need a helping hand. . .

SELECT DISTINCT pname
FROM parents
WHERE child IN (SELECT name

FROM persons
WHERE place = "Hamilton");

8/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

2. Programming languages are bad at data processing.

3. We need database technology in our programming languages.

Potential solution?

Produce

data

Database engine

Data processing

(“complex” queries)

Consume

results

8/16

Programming and data processing

Claims

1. Data processing plays a central role in programming.

2. Programming languages are bad at data processing.

3. We need database technology in our programming languages.

Potential solution?

Produce

data

Database engine

Data processing

(“complex” queries)

Consume

results

9/16

Database systems are not the solution

Produce

data

Database engine

Insert

Read

Data processing

(“complex” queries)

Consume

results

What if we use a database system

For example, PostgreSQL (is free!)

Not all data is always in a database system.

▶ There might not be a database system.

▶ Inserting data into and reading data from the system is not free:

Data transfers, necessary code to “translate” between types,

▶ Conceptual mismatches: database code does not mix well with other code!

For example, type safety (program) versus no type safety (query results).

9/16

Database systems are not the solution

Produce

data

Database engine

Insert

Read

Data processing

(“complex” queries)

Consume

results

What if we use a database system

For example, PostgreSQL (is free!)

Not all data is always in a database system.

▶ There might not be a database system.

▶ Inserting data into and reading data from the system is not free:

Data transfers, necessary code to “translate” between types,

▶ Conceptual mismatches: database code does not mix well with other code!

For example, type safety (program) versus no type safety (query results).

9/16

Database systems are not the solution

Produce

data

Database engine

Insert

Read
Data processing

(“complex” queries)

Consume

results

What if we use a database system

For example, PostgreSQL (is free!)

Not all data is always in a database system.

▶ There might not be a database system.

▶ Inserting data into and reading data from the system is not free:

Data transfers, necessary code to “translate” between types,

▶ Conceptual mismatches: database code does not mix well with other code!

For example, type safety (program) versus no type safety (query results).

9/16

Database systems are not the solution

Produce

data

Database engine

Insert

Read
Data processing

(“complex” queries)

Consume

results

What if we use a database system

For example, PostgreSQL (is free!)

Not all data is always in a database system.

▶ There might not be a database system.

▶ Inserting data into and reading data from the system is not free:

Data transfers, necessary code to “translate” between types,

▶ Conceptual mismatches: database code does not mix well with other code!

For example, type safety (program) versus no type safety (query results).

9/16

Database systems are not the solution

Produce

data

Database engine

Insert

Read
Data processing

(“complex” queries)

Consume

results

What if we use a database system

For example, PostgreSQL SQLLite (is free!)

Not all data is always in a database system.

▶ There might not be a database system.

▶ Inserting data into and reading data from the system is not free:

Data transfers, necessary code to “translate” between types,

▶ Conceptual mismatches: database code does not mix well with other code!

For example, type safety (program) versus no type safety (query results).

10/16

Proposed solution

What if. . .

query<"%(parent) :- parents(parent, c),"
" persons(c, 'Hamilton')">(dataset);

is valid C++ code in which query implements an optimized C++ algorithm.

How to do so

Create a C++ library that

▶ Provides a domain specific query language for C++.

▶ At C++ compile time, the library compiles these queries into C++ algorithms:

derive result types, derive query evaluation strategy,

▶ At runtime: these queries are normal C++ functions.

10/16

Proposed solution

What if. . .

query<"%(parent) :- parents(parent, c),"
" persons(c, 'Hamilton')">(dataset);

is valid C++ code in which query implements an optimized C++ algorithm.

How to do so

Create a C++ library that

▶ Provides a domain specific query language for C++.

▶ At C++ compile time, the library compiles these queries into C++ algorithms:

derive result types, derive query evaluation strategy,

▶ At runtime: these queries are normal C++ functions.

11/16

Proposed solution: Feasibility and status

▶ C++ compile-time support for domain specific languages:

Almost feature complete (optimistic: publication in 2024?).

▶ C++ compile-time query compiler:

Proof-of-concept complete→ we can turn high-level Datalog into algorithms.

▶ Compile-time query planner and query optimizer: more work needed.

Challenges

std::set<my_fancy_type, my_fancy_ordering> my_fancy_dataset;

▶ Which fields does my_fancy_type define?

▶ What ordering does my_fancy_ordering provide? Keys? Index?

Solution. Sensible defaults where possible, else provide such information via traits classes.

Reflection (potential future C++ standards) might partly help.

11/16

Proposed solution: Feasibility and status

▶ C++ compile-time support for domain specific languages:

Almost feature complete (optimistic: publication in 2024?).

▶ C++ compile-time query compiler:

Proof-of-concept complete→ we can turn high-level Datalog into algorithms.

▶ Compile-time query planner and query optimizer: more work needed.

Challenges

std::set<my_fancy_type, my_fancy_ordering> my_fancy_dataset;

▶ Which fields does my_fancy_type define?

▶ What ordering does my_fancy_ordering provide? Keys? Index?

Solution. Sensible defaults where possible, else provide such information via traits classes.

Reflection (potential future C++ standards) might partly help.

11/16

Proposed solution: Feasibility and status

▶ C++ compile-time support for domain specific languages:

Almost feature complete (optimistic: publication in 2024?).

▶ C++ compile-time query compiler:

Proof-of-concept complete→ we can turn high-level Datalog into algorithms.

▶ Compile-time query planner and query optimizer: more work needed.

Challenges

std::set<my_fancy_type, my_fancy_ordering> my_fancy_dataset;

▶ Which fields does my_fancy_type define?

▶ What ordering does my_fancy_ordering provide? Keys? Index?

Solution. Sensible defaults where possible, else provide such information via traits classes.

Reflection (potential future C++ standards) might partly help.

11/16

Proposed solution: Feasibility and status

▶ C++ compile-time support for domain specific languages:

Almost feature complete (optimistic: publication in 2024?).

▶ C++ compile-time query compiler:

Proof-of-concept complete→ we can turn high-level Datalog into algorithms.

▶ Compile-time query planner and query optimizer: more work needed.

Challenges

std::set<my_fancy_type, my_fancy_ordering> my_fancy_dataset;

▶ Which fields does my_fancy_type define?

▶ What ordering does my_fancy_ordering provide? Keys? Index?

Solution. Sensible defaults where possible, else provide such information via traits classes.

Reflection (potential future C++ standards) might partly help.

11/16

Proposed solution: Feasibility and status

Source: https://xkcd.com/303/ by Randall Munroe.

https://xkcd.com/303/

12/16

Query compilation and evaluation

We can use a database-style query planner and query optimizer.

A compile time environment is different, however.

Zero-cost principle

Our abstraction of a domain specific query language should not introduce costs

(when compared to a handwritten algorithm).

▶ Only-once query optimization (one compile time, many executions).

▶ Query optimization without access to the data.

▶ At runtime: algorithms can make choices (e.g., if–else),
But there is only limited information: C++ containers do not have heuristics.

12/16

Query compilation and evaluation

We can use a database-style query planner and query optimizer.

A compile time environment is different, however.

Zero-cost principle

Our abstraction of a domain specific query language should not introduce costs

(when compared to a handwritten algorithm).

▶ Only-once query optimization (one compile time, many executions).

▶ Query optimization without access to the data.

▶ At runtime: algorithms can make choices (e.g., if–else),
But there is only limited information: C++ containers do not have heuristics.

13/16

Demonstration—If time allows

Base relations

▶ person(id, name) assigns names to nodes.

▶ parentOf (parent, child) relates persons.

Example dataset

Alice Bo

FaytheCeleste

Dafni

Eva Greta

13/16

Demonstration—If time allows

Example queries

grandparentOf(0, 1) :- parentOf(0, 2), parentOf(2, 1);

grandparentOnly(0) :- parentOf(0, 1), parentOf(1, 2);

ancestorOf(0, 1) :- parentOf(0, 1);
ancestorOf(0, 1) :- parentOf(0, 2), ancestorOf(2, 1);

ancestorNamed(0, 1) :- ancestorOf(2, 3), person(2, 0), person(3, 1);

siblingOf(0, 1) :- parentOf(2, 0), parentOf(2, 1);

14/16

Evaluation: Two perspectives

First perspective: How do we compare with existing database products.

Second perspective: How do we compare with (C++) programmers?

▶ Performance?

▶ Readability?

▶ Ease-of-use?

Central question

Should we switch to declarative languages even in traditional procedural source code?

14/16

Evaluation: Two perspectives

First perspective: How do we compare with existing database products.

Second perspective: How do we compare with (C++) programmers?

▶ Performance?

▶ Readability?

▶ Ease-of-use?

Central question

Should we switch to declarative languages even in traditional procedural source code?

14/16

Evaluation: Two perspectives

First perspective: How do we compare with existing database products.

Second perspective: How do we compare with (C++) programmers?

▶ Performance?

▶ Readability?

▶ Ease-of-use?

Central question

Should we switch to declarative languages even in traditional procedural source code?

15/16

Research Volunteers Needed

To evaluate our research, we will compare with data processing programs written in C++.

You can provide these C++ programs via an online questionnaire.

▶ Letter of Information https://jhellings.nl/q/loi.pdf.

▶ Questionnaire at https://jhellings.nl/q/.

The questionnaire takes 30min–120min and participation is entirely voluntarily.

This study has been reviewed by and received ethics clearance from the

McMaster Research Ethics Board (#6885).

https://jhellings.nl/q/loi.pdf
https://jhellings.nl/q/

16/16

Conclusion

Programming Languages do needQuery Languages!

Questionnaire at https://jhellings.nl/q/.

https://jhellings.nl/q/

