
Optimizing Recursive Joins in Graph
Database Management Systems

Anurag Chakraborty,
David R. Cheriton School of Computer Science

13/12/23

Outline

● Background on Graph DBMS & Recursive Joins

● Why are Recursive Joins challenging ?

● Query Processing for Recursive Joins

● Future Work

Optimizing Recursive Joins in GDBMS PAGE 2

Outline

Optimizing Recursive Joins in GDBMS PAGE 3

● Background on Graph DBMS & Recursive Joins

● Why are Recursive Joins challenging ?

● Query Processing for Recursive Joins

● Future Work

Background on Graph Databases
Data Model

➢ Labeled Property Graph (LPG)
Query Language

- Express subgraph pattern for Pattern Matching

- Express recursive queries for Graph Path
Traversal

Optimizing Recursive Joins in GDBMS PAGE 4

Background on Recursive Joins
Core competency of GDBMS compared to RDBMS

(1) Easier to express in the query language of GDBMS:

Query: Return all people ‘Alice’ knows directly / indirectly and the path length between them

Cypher:

MATCH p = (p1:Person)-[:knows* SHORTEST 1..30]->(p2:Person)
WHERE p1.name = ‘Alice’ RETURN p2, length(p)

Harder to express in recursive SQL.

Optimizing Recursive Joins in GDBMS PAGE 5

Background on Recursive Joins
Core competency of GDBMS compared to RDBMS

(2) Also often faster to execute in GDBMS

GDBMS have specialized recursive join operators

Optimizing Recursive Joins in GDBMS PAGE 6

Query:

MATCH p = (a:Person)-[r:knows* 1..30]->(b:Person)
WHERE a.name = “Alice”
RETURN a.ID, b.ID, length(p)

Outline

● Background on Graph DBMS & Recursive Joins

● Why are Recursive Joins challenging ?

● Query Processing for Recursive Joins

● Future Work

Optimizing Recursive Joins in GDBMS PAGE 7

SoTA Approach in Analytical DBMS: Morsel-driven Parallelism

Optimizing Recursive Joins in GDBMS PAGE 8

- allot fixed size “morsels” to
threads (1024 - 2048 - 100,000
tuples)

- threads execute on their morsels
for 1 pipeline until the pipeline
breaker

* Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age, Leis et al.

SoTA Approach in Analytical DBMS: Morsel-driven Parallelism

Optimizing Recursive Joins in GDBMS PAGE 9

- allot fixed size “morsels” to
threads (1024 - 2048 - 100,000
tuples)

- threads execute on their morsels
for 1 pipeline until the pipeline
breaker

- morsel dispatcher allots other
morsels to threads, after
completion of previous pipeline

Problem with Morsel-Driven Parallelism for Recursive Joins

Optimizing Recursive Joins in GDBMS PAGE 10

1. Recursive Join operators find variable length / shortest path from a single source
node. Usually involve some form of BFS style traversal.

Problem with Morsel-Driven Parallelism for Recursive Joins

Optimizing Recursive Joins in GDBMS PAGE 11

1. Recursive Join operators find variable length / shortest path from a single source
node.

- Most real world graphs display small world network property

- 5 or 6 steps may “traverse” the entire database

- This makes recursive joins, even from 1 source very expensive

Example:
MATCH p = (p1:Person)-[:knows* SHORTEST 1..30]->(p2:Person)
WHERE p1.name = ‘Alice’ RETURN p2, length(p)

Problem with Morsel-Driven Parallelism for Recursive Joins

Optimizing Recursive Joins in GDBMS PAGE 12

2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Problem with Morsel-Driven Parallelism for Recursive Joins

Optimizing Recursive Joins in GDBMS PAGE 13

2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Example:
MATCH
p = (p1:Person)-[:knows* SHORTEST
1..30]->(p2:Person)
WHERE p1.ID < 50 RETURN length(p)

Problem with Morsel-Driven Parallelism for Recursive Joins

Optimizing Recursive Joins in GDBMS PAGE 14

2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Example:
MATCH
p = (p1:Person)-[:knows* SHORTEST
1..30]->(p2:Person)
WHERE p1.ID < 50 RETURN length(p)

Q.) How can we
parallelize pipelines
with recursive join
operators robustly ?

Solution

Optimizing Recursive Joins in GDBMS PAGE 15

(1) Make Recursive Join operator into a source operator to start the query pipeline.
Threads should start BFS with a single source from this operator.

Solution (Query Plan)

Optimizing Recursive Joins in GDBMS PAGE 16

Cypher query:

MATCH p = (a:Person)-[r:knows*
 SHORTEST 1..30]->(b:Person)
WHERE a.ID < 1000 AND b.ID < 1000
RETURN a.ID, b.ID, length(p)

Recursive Join (RecJoin) operator
must be the start of a pipeline

Solution

Optimizing Recursive Joins in GDBMS PAGE 17

(2) Morselize as before among threads with effective morsel size as 1 BFS source node
 (Inter-RecJoin parallelism)

(3) When threads are idle, morselize a single RecJoin’s BFS Level (frontier) into granular
 morsels among these threads (Intra-RecJoin parallelism)

Solution

Optimizing Recursive Joins in GDBMS PAGE 18

(2) Morselize as before among threads with effective morsel size as 1 BFS source node
 (Inter-RecJoin parallelism)

(3) When threads are idle, morselize a single RecJoin’s BFS Level (frontier) into granular
 morsels among these threads (Intra-RecJoin parallelism)

- Define two types of morsels: (i) BFSMorsel (single source recursive join)
 (ii) BFSLevelMorsel (subset of BFSMorsel’s join)

- Introduce a Recursive Join scheduler that distributes this work

Outline

Optimizing Recursive Joins in GDBMS PAGE 19

● Background on Graph DBMS & Recursive Joins

● Why are Recursive Joins challenging ?

● Query Processing for Recursive Joins

● Future Work

Recursive Join Physical Operator
- BFSScheduler: Operators own

scheduler that distributes work to
the threads.

BFSScheduler controls total no. of
concurrent BFSMorsel to at most k.
Max limit is set to n (total threads).

n Threads, k BFSMorsel

nTkS scheduler

Optimizing Recursive Joins in GDBMS PAGE 20

Recursive Join Physical Operator
- BFSScheduler: Operators own

scheduler that distributes work to
the threads.

(1) BFS Scheduler launches a new BFS
 recursive join from a source if total
 (active BFSMorsel < k)

Optimizing Recursive Joins in GDBMS PAGE 21

Recursive Join Physical Operator
- BFSScheduler: Operators own

scheduler that distributes work to
the threads.

(1) BFS Scheduler launches a new BFS
 recursive join from a source if total
 (active BFS < k)

(2) If not, scheduler iterates over all active
 BFSMorsel to find BFS with most
 work and allot subset of the join as a
 BFSLevelMorsel.

Optimizing Recursive Joins in GDBMS PAGE 22

Returning Path (Shortest / All Shortest)
- maintain a global visited array

- update node states as they are encountered

- use lightweight lock-free synchronization

- additionally maintain multiplicity (all shortest path)

- use atomic CAS operations to update states and track
 {source node, edge} of nodes

- use atomic fetch and add (faa) operations to update
 multiplicity (for path length)

Optimizing Recursive Joins in GDBMS PAGE 23

Returning Path (Variable Length)
- maintain a global visited array

- update node states as they are encountered

- use lightweight lock-free synchronization

- additionally maintain multiplicity at different levels

- use atomic CAS operations to update states and track
 {source node, edge} of nodes at different levels

- use atomic fetch and add (faa) operations to update
 multiplicity (for path length)

Optimizing Recursive Joins in GDBMS PAGE 24

Results

Optimizing Recursive Joins in GDBMS PAGE 25

Microbenchmark: (LDBC-100)

MATCH (a:Person)-[r:knows* SHORTEST 1..30]->(b:Person) WHERE a.ID = 94 return b.ID, length(r);
Total tuples: 407,396

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

728.6 ms 61 ms (12x faster)

Microbenchmark: (LiveJournal)

MATCH (a:lj_node)-[r:lj_rel* SHORTEST 1..30]->(b:lj_node) WHERE a.id < 1000 return b.ID, length(r);
Total tuples: 4,237,533,225

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

 158 s 105 s (1.5x faster)

Results

Optimizing Recursive Joins in GDBMS PAGE 26

Microbenchmark: (graph500-23)

MATCH (a:nodes)-[r:rels* ALL SHORTEST 1..30]->(b:nodes) WHERE a.id = 307 RETURN r;
Total tuples: 105,576,064

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

511s 35s (14.6x faster)

Microbenchmark: (graph500-24)

MATCH (a:nodes)-[r:rels* 1..4]->(b:nodes) WHERE a.id = 0 RETURN r;
Total tuples: 126,749,073

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

 634s 37.6s (16.9x faster)

Outline

● Background on Graph DBMS & Recursive Joins

● Why are Recursive Joins challenging ?

● Query Processing for Recursive Joins

● Future Work

Optimizing Recursive Joins in GDBMS PAGE 27

Future Work

➢ Integrating other techniques [Multi source BFS (MS-BFS), Bidirectional BFS]

➢ Storing paths in a compressed manner for vectorized execution ?

➢ Weighted Shortest Path (Dijkstra, Bellman Ford, …) ?

Optimizing Recursive Joins in GDBMS PAGE 28

Thank You

Optimizing Recursive Joins in GDBMS PAGE 29

