Optimizing Recursive Joins in Graph
Database Management Systems

13/12/23

Anurag Chakraborty,
David R. Cheriton School of Computer Science

UNIVERSITY OF Data
5 WATERLGO DS3i:

Outline

Background on Graph DBMS & Recursive Joins
« Why are Recursive Joins challenging ?

« Query Processing for Recursive Joins

o Future Work

Optimizing Recursive Joins in GDBMS

e 2 %’ WATERLOO

Outline

« Background on Graph DBMS & Recursive Joins

AGE 3 %’ WATERLOO

Optimizing Recursive Joins in GDBMS

Background on Graph Databases

Data Model
> Labeled Property Graph (LPG)

Query Language

Neo4;j
:knows Cypher Query
Language
e @} nows @ e sRk202s

MATCH

(a:Person)-[rl:Stays At]->(b:Place)<-[r2:Stays At]-(c:Person)
RETURN b.Population;

Stays_At St At ;

Slnac{es 2017 Slri);s 2018

- Express subgraph pattern for Pattern Matching

:Place
Population -

150k - Express recursive queries for Graph Path

Traversal

Optimizing Recursive Joins in GDBMS PAGE 4 % WATERLOO

Background on Recursive Joins

Core competency of GDBMS compared to RDBMS

(1) Easier to express in the query language of GDBMS:

Query: Return all people ‘Alice’ knows directly / indirectly and the path length between them

Cypher:

MATCH p = (p1:Person)-[:knows* SHORTEST 1..30]->(p2:Person)
WHERE pi.name = ‘Alice’ RETURN p2, length(p)

Harder to express in recursive SQL.

AGE 5 %’ WATERLOO

Optimizing Recursive Joins in GDBMS

Background on Recursive Joins

Core competency of GDBMS compared to RDBMS

(2) Also often faster to execute in GDBMS

s 3

o 7o . o o VarlL
GDBMS have specialized recursive join operators Query Subplan | ng Jgir;‘ ______ -
Operator
Query:
MATCH p = (a:Person)-[r:knows* 1..30]->(b:Person)
WHERE a.name = “Alice”
RETURN a.ID, b.ID, length(p)
W UNIVERSITY OF
Optimizing Recursive Joins in GDBMS PAGE 6 @ WATERLOO

Outline

« Why are Recursive Joins challenging ?

Optimizing Recursive Joins in GDBMS PAGE 7 % WATERLOO

SoTA Approach in Analytical DBMS: Morsel-driven Parallelism

- allot fixed size “morsels” to
threads (1024 - 2048 - 100,000) , ———%: i .
tu les) f """ Hash Join Build Hash Join Build
P | : \ \
\> Morsel % Filter) (Filter
_< \\ L J 5
- « i i
- threads execute on their morsels > Morselo _ \ _ 5 i i
fOI’ 1 pipeline untﬂ the pipeline J‘ | Morsel D‘Ispatcher J Tablefcan 1 | | Table fcan 1
\
breaker P i
% —T=Thread 1=~ Pid
e T~ ~~_Thread2--—"" -

* Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age, Leis et al.

aGE & %’ WATERLOO

Optimizing Recursive Joins in GDBMS

SoTA Approach in Analytical DBMS: Morsel-driven Parallelism

- allot fixed size “morsels” to
threads (1024 - 2048 - 100,000

Hash Table (T1) | | k¥

S s .
tuples) , /// key2 ‘\\\\
4)
> Morsel ® “1 Hash Join Probe l Hash Join Probe [
. < ® T ? |
- threads execute on their morsels L Morselo .\, . . - | i
for 1 pipeline until the pipeline) {_ Morsel Dispatcher | | Tablescan2 | [Tablescanz |
) ! i 4 4
breaker . ;
N, ~~Thread 1-—~ >
e ~—~<Thread 2=="" &l

- morsel dispatcher allots other
morsels to threads, after
completion of previous pipeline

Optimizing Recursive Joins in GDBMS PAGE 9 % WATERLOO

Problem with Morsel-Driven Parallelism for Recursive Joins

1. Recursive Join operators find variable length / shortest path from a single source
node. Usually involve some form of BFS style traversal.

Frontiery

Frontier,

Optimizing Recursive Joins in GDBMS PAGE 10 % WATERLOO

Problem with Morsel-Driven Parallelism for Recursive Joins

1. Recursive Join operators find variable length / shortest path from a single source
node.

- Most real world graphs display small world network property
- 5 or 6 steps may “traverse” the entire database
- This makes recursive joins, even from 1 source very expensive

Example:
MATCH p = (p1:Person)-[:knows* SHORTEST 1..30]->(p2:Person)
WHERE pi.name = ‘Alice’ RETURN p2, length(p)

Optimizing Recursive Joins in GDBMS PAGE 11 % WATERLOO

Problem with Morsel-Driven Parallelism for Recursive Joins

2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Optimizing Recursive Joins in GDBMS PAGE 12 % WATERLOO

C
Problem with Morsel-Driven Parallelism for Recursive Joins

2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Example:
MATCH
p = (p1:Person)-[:knows* SHORTEST

1..30]->(p2:Person)

WHERE p1.ID < 50 RETURN length(p)
\ 4
Morsel Size: :
j 2048 1
& ----- ! : { RecJoin Operator }
‘ Thread 2
Idl
| © 4
r Morsel, \)
/ Thread 1 Filter Operator
T Morselg 1 " \ T
) L Morsel Dispatcher)\ Table Scan 1

Optimizing Recursive Joins in GDBMS PAGE 13 % WATERLOO

C
Problem with Morsel-Driven Parallelism for Recursive Joins

2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Example:
MATCH
p = (p1:Person)-[:knows* SHORTEST

1..30]->(p2:Person)

WHERE p1.ID < 50 RETURN length(p)
A

Morsel Size: :
1

) 2048
Q.) How can we ‘} """ S { RecJoin Operator]
parallelize pipelines | Idle :
ith . o o r Morsel; .)
with recursive jom | i [rerssan \ Filter Operator
operators robustly ? < !
T Morselg \r 1 - "\\,
) | Morsel Dispatcher | Table Scan 1

Optimizing Recursive Joins in GDBMS PAGE 14 % WATERLOO

Solution

(1) Make Recursive Join operator into a source operator to start the query pipeline.
Threads should start BFS with a single source from this operator.

Optimizing Recursive Joins in GDBMS PAGE 15 % WATERLOO

[]
Solution (Query Plan)
{ Result Collector ’
Cypher query: T Y
Hash Join Probe 1
MATCH p = (a:Person)-[r:knows* L) (S
SHORTEST 1..30]->(b:Person) Has}zg_o_';;)&md
WHERE a.ID < 1000 AND b.ID < 1000 . J
RETURN a.ID, b.ID, length(p) 1
Recursive Join N[Semi Maske i
AB J‘_"* B id J
Recursive Join (RecJoin) operator — ! . — ? .
must be the start of a pipeline ier T(A"D) J | Fter ?(B"D)
[Scan Node A J [Scan Node B J

Optimizing Recursive Joins in GDBMS PAGE 16 % WATERLOO

Solution

(2) Morselize as before among threads with effective morsel size as 1 BFS source node
(Inter-RecJoin parallelism)

(3) When threads are idle, morselize a single RecJoin’s BFS Level (frontier) into granular
morsels among these threads (/ntra-RecJoin parallelism)

Optimizing Recursive Joins in GDBMS PAGE 17 % WATERLOO

Solution

(2) Morselize as before among threads with effective morsel size as 1 BFS source node
(Inter-RecJoin parallelism)

(3) When threads are idle, morselize a single RecJoin’s BFS Level (frontier) into granular
morsels among these threads (/ntra-RecJoin parallelism)

- Define two types of morsels: (i) BFSMorsel (single source recursive join)
(i1) BESLevelMorsel (subset of BESMorsel’s join)

- Introduce a Recursive Join scheduler that distributes this work

A WATERLOO

Optimizing Recursive Joins in GDBMS PAGE 18 @

Outline

« Query Processing for Recursive Joins

AGE 15 %’ WATERLOO

Optimizing Recursive Joins in GDBMS

Recursive Join Physical Operator

. BESScheduler: Operators own

scheduler that distributes work to N

the threads. | SfCo
BFSScheduler controls total no. of :/S rc]\‘ @_» N,
concurrent BFSMorsel to at most k. N/ L

Max limit is set to n (total threads).

—_— s

Threads, k BFSMorsel 7\

|

scheduler

Optimizing Recursive Joins in GDBMS PAGE 20 % WATERLOO

Recursive Join Physical Operator

BESScheduler: Operators own
scheduler that distributes work to

the threads. Q
SICo N

A
r \
(1) BFS Scheduler launches a new BFS @F .. < BFSScheduler —>-4—» Recursive Join |le——00_
= - J
> 4
-
¥

recursive join from a source if total
(active BFSMorsel < k)

~

\
|

) 1\ =

.

o { Thread 1

{ Thread 2 - { Thread n

))
/ 4 J J,

| Srcg v

=\

"
_/ | BFSLevelMorsel

J

Optimizing Recursive Joins in GDBMS PAGE 21 % WATERLOO

Recursive Join Physical Operator

BESScheduler: Operators own
scheduler that distributes work to

the threads. @ Ry,
: 1’]

Recursive Join -
4 . :

(1) BFS Scheduler launches a new BFS e P N ;
. . . . () R ey '
recursive join from a source if total 4 /
(active BFS < k) |
(\ ‘
. . Thread 1 Thread 2 Tt Thread n
(2) If not, scheduler iterates over all active ’ J) L J
BFSMorsel to find BFS with most .
work and allot subset of the join as a BFSLevelMorsel BFSLevelMorsel BFSLevelMorsel
BFSL 1M 1 - Srcg BFS - src; BFS - srcy1 BFS
eve orsel. - morsel from BFS Frontier J - morsel from BFS Frontier - morsel from BFS Frontier

Optimizing Recursive Joins in GDBMS PAGE 22 % WATERLOO

Returning Path (Shortest / All Shortest)

- maintain a global visited array

e \/ -’__"‘\
- NOT VISITED DST
update node states as they are encountered . e B N \\
, . o / VISITED_DST |
- use lightweight lock-free synchronization (:
K NOT_VISITED
- additionally maintain multiplicity (all shortest path) 1 V'S\'/T';[%_ET')EW }'|
- use atomic CAS operations to update states and track \--—--/____/“--—-f

{source node, edge} of nodes

I

- use atomic fetch and add (faa) operations to update

multiplicity (for path length) |

| s 2
L J L J L D,

NOT_VISITED_DST | »{VISITED_DST_NEW || VISITED_DST

\.

NOT_VISITED | »|VISITED NEWL— | VISITED

J u J . J

Optimizing Recursive Joins in GDBMS PAGE 23 % WATERLOO

Returning Path (Variable Length)

- maintain a global visited array =Y
NOT_VISITED_DST
| VISITED_DST_NEW
- update node states as they are encountered / VISITED DST ‘;
| |
- use lightweight lock-firee synchronization ' NOT_VISITED
5 5 Jree sy \\ﬁﬂi VISITED_NEW '*|
. o . ge s . | VISITED :
- additionally maintain multiplicity at different levels \\ /
S N
- use atomic CAS operations to update states and track
{source node, edge} of nodes at different levels
- use atomic fetch and add (faa) operations to update ‘(NOT_VISITED_DST \H(VISITED_DST_NEW\H}K VISITED_DST \

multiplicity (for path length)

(NOT_VISITED %»(VISITED_NEW H‘(VISITED |
L J L J \ J

Optimizing Recursive Joins in GDBMS PAGE 24 % WATERLOO

Results

Microbenchmark: (LDBC-100)

MATCH (a:Person)-[r:knows* SHORTEST 1..30]->(b:Person) WHERE a.ID = 94 return b.ID, length(r);
Total tuples: 407,396

Kuzu (Baseline MDP - 32 threads) Kuzu (nTkS - 32 threads)

728.6 ms 61 ms (12x faster)

Microbenchmark: (LiveJournal)

MATCH (a:lj_node)-[r:lj_rel* SHORTEST 1..30]->(b:lj_node) WHERE a.id < 1000 return b.ID, length(r);
Total tuples: 4,237,633,225

Kuzu (Baseline MDP - 32 threads) Kuzu (nTkS - 32 threads)

158 s 105 s (1.5x faster)

Optimizing Recursive Joins in GDBMS PAGE 25 % WATERLOO

Results

Microbenchmark: (graph500-23)

MATCH (a:nodes)-[r:rels* ALL SHORTEST 1..30]->(b:nodes) WHERE a.id = 307 RETURN r;
Total tuples: 105,576,064

Kuzu (Baseline MDP - 32 threads) Kuzu (nTkS - 32 threads)

511s 35s (14.6x faster)

Microbenchmark: (graph500-24)

MATCH (a:nodes)-[r:rels* 1..4]->(b:nodes) WHERE a.id = 0 RETURN ;
Total tuples: 726,749,073

Kuzu (Baseline MDP - 32 threads) Kuzu (nTkS - 32 threads)

634s 37.6s (16.9x faster)

Optimizing Recursive Joins in GDBMS PAGE 26 % WATERLOO

Outline

o Future Work

Optimizing Recursive Joins in GDBMS

AGE 27 %’ WATERLOO

Future Work

> Integrating other techniques [Multi source BFS (MS-BFS), Bidirectional BFS]
> Storing paths in a compressed manner for vectorized execution ?

> Weighted Shortest Path (Dijkstra, Bellman Ford, ...) ?

Optimizing Recursive Joins in GDBMS PAGE 28 % WATERLOO

UNIVERSITY OF

WATERLOO

Thank You

Optimizing Recurs ive Joins in GDBMS

