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Background on Graph Databases
Data Model

➢ Labeled Property Graph (LPG)
Query Language

- Express subgraph pattern for Pattern Matching

- Express recursive queries for Graph Path 
Traversal
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Background on Recursive Joins
Core competency of GDBMS compared to RDBMS

(1) Easier to express in the query language of GDBMS:

Query: Return all people ‘Alice’ knows directly / indirectly and the path length between them

Cypher:

MATCH p = (p1:Person)-[:knows* SHORTEST 1..30]->(p2:Person) 
WHERE p1.name = ‘Alice’ RETURN p2, length(p)

Harder to express in recursive SQL.
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Background on Recursive Joins
Core competency of GDBMS compared to RDBMS

(2) Also often faster to execute in GDBMS

GDBMS have specialized recursive join operators 
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Query:

MATCH    p = (a:Person)-[r:knows* 1..30]->(b:Person)   
WHERE    a.name = “Alice” 
RETURN  a.ID, b.ID, length(p)
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SoTA Approach in Analytical DBMS: Morsel-driven Parallelism
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- allot fixed size “morsels” to 
threads   (1024 - 2048 - 100,000 
tuples)

- threads execute on their morsels 
for 1 pipeline until the pipeline 
breaker 

* Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-Core Age, Leis et al.



SoTA Approach in Analytical DBMS: Morsel-driven Parallelism
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- allot fixed size “morsels” to 
threads (1024 - 2048 - 100,000 
tuples)

- threads execute on their morsels 
for 1 pipeline until the pipeline 
breaker 

- morsel dispatcher allots other 
morsels to threads, after 
completion of previous pipeline



Problem with Morsel-Driven Parallelism for Recursive Joins
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1. Recursive Join operators find variable length / shortest path from a single source 
node. Usually involve some form of BFS style traversal.



Problem with Morsel-Driven Parallelism for Recursive Joins
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1. Recursive Join operators find variable length / shortest path from a single source 
node.

- Most real world graphs display small world network property

- 5 or 6 steps may “traverse” the entire database

- This makes recursive joins, even from 1 source very expensive

Example: 
MATCH p = (p1:Person)-[:knows* SHORTEST 1..30]->(p2:Person) 
WHERE p1.name = ‘Alice’ RETURN p2, length(p)



Problem with Morsel-Driven Parallelism for Recursive Joins
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2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread
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2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Example: 
MATCH 
p = (p1:Person)-[:knows* SHORTEST 
1..30]->(p2:Person) 
WHERE p1.ID < 50 RETURN length(p)



Problem with Morsel-Driven Parallelism for Recursive Joins
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2. Dispatcher may allot a morsel with disproportionate no. of sources to a single thread

Example: 
MATCH 
p = (p1:Person)-[:knows* SHORTEST 
1..30]->(p2:Person) 
WHERE p1.ID < 50 RETURN length(p)

Q.) How can we 
parallelize pipelines 
with recursive join 
operators robustly ?



Solution
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(1) Make Recursive Join operator into a source operator to start the query pipeline.
Threads should start BFS with a single source from this operator.



Solution (Query Plan)
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Cypher query:

MATCH    p = (a:Person)-[r:knows*  
                   SHORTEST 1..30]->(b:Person)   
WHERE    a.ID < 1000 AND b.ID < 1000 
RETURN  a.ID, b.ID, length(p)

Recursive Join (RecJoin) operator 
must be the start of a pipeline



Solution
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(2)  Morselize as before among threads with effective morsel size as 1 BFS source node  
       (Inter-RecJoin parallelism)

(3)  When threads are idle, morselize a single RecJoin’s BFS Level (frontier) into granular 
       morsels among these threads (Intra-RecJoin parallelism)



Solution
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(2)  Morselize as before among threads with effective morsel size as 1 BFS source node  
       (Inter-RecJoin parallelism)

(3)  When threads are idle, morselize a single RecJoin’s BFS Level (frontier) into granular 
       morsels among these threads (Intra-RecJoin parallelism)

- Define two types of morsels: (i) BFSMorsel (single source recursive join)
                                               (ii) BFSLevelMorsel (subset of BFSMorsel’s join)

- Introduce a Recursive Join scheduler that distributes this work
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Recursive Join Physical Operator
- BFSScheduler: Operators own 

scheduler that distributes work to 
the threads.  

BFSScheduler controls total no. of 
concurrent BFSMorsel to at most k.
Max limit is set to n (total threads).

n Threads, k BFSMorsel 

nTkS scheduler
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Recursive Join Physical Operator
- BFSScheduler: Operators own 

scheduler that distributes work to
the threads.  

(1) BFS Scheduler launches a new BFS 
      recursive join from a source if total     
      (active BFSMorsel < k) 
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Recursive Join Physical Operator
- BFSScheduler: Operators own 

scheduler that distributes work to
the threads.  

(1) BFS Scheduler launches a new BFS   
      recursive join from a source if total     
      (active BFS < k) 

(2) If not, scheduler iterates over all active 
      BFSMorsel to find BFS with most 
      work and allot subset of the join as a 
      BFSLevelMorsel.
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Returning Path (Shortest / All Shortest)
- maintain a global visited array

- update node states as they are encountered

- use lightweight lock-free synchronization

- additionally maintain multiplicity (all shortest path)

- use atomic CAS operations to update states and track 
  {source node, edge} of nodes

- use atomic fetch and add (faa) operations to update 
  multiplicity (for path length)
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Returning Path (Variable Length)
- maintain a global visited array

- update node states as they are encountered

- use lightweight lock-free synchronization

- additionally maintain multiplicity at different levels

- use atomic CAS operations to update states and track 
  {source node, edge} of nodes at different levels

- use atomic fetch and add (faa) operations to update 
  multiplicity (for path length)
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Results
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Microbenchmark: (LDBC-100)

MATCH (a:Person)-[r:knows* SHORTEST 1..30]->(b:Person) WHERE a.ID = 94 return b.ID, length(r);
Total tuples: 407,396

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

728.6 ms 61 ms (12x faster)

Microbenchmark: (LiveJournal)

MATCH (a:lj_node)-[r:lj_rel* SHORTEST 1..30]->(b:lj_node) WHERE a.id < 1000 return b.ID, length(r);
Total tuples: 4,237,533,225

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

 158 s 105 s (1.5x faster)



Results
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Microbenchmark: (graph500-23)

MATCH (a:nodes)-[r:rels* ALL SHORTEST 1..30]->(b:nodes) WHERE a.id = 307 RETURN r;
Total tuples: 105,576,064

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

511s 35s (14.6x faster)

Microbenchmark: (graph500-24)

MATCH (a:nodes)-[r:rels* 1..4]->(b:nodes) WHERE a.id = 0 RETURN r;
Total tuples: 126,749,073

Kùzu (Baseline MDP - 32 threads) Kùzu (nTkS - 32 threads)

 634s 37.6s (16.9x faster)
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Future Work

➢ Integrating other techniques [Multi source BFS (MS-BFS), Bidirectional BFS]

➢ Storing paths in a compressed manner for vectorized execution ?

➢ Weighted Shortest Path (Dijkstra, Bellman Ford, …) ? 
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Thank You
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