

UNIVERSITY OF
TORONTO

Towards Efficient And Reliable Data Curation for Machine Learning

Presenter: Naiqing Guan
Supervisor: Nick Koudas

"AI is akin to building a rocket ship. You need a huge engine and a lot of fuel. The rocket engine is the learning algorithms, but the fuel is the huge amounts of data we can feed to these algorithms."

— Andrew Ng

Data Curation for ML Pipelines

Data Creation

Collecting and
annotating datasets for
training ML models

Data Organization

Structuring and
indexing the data for
efficient queries

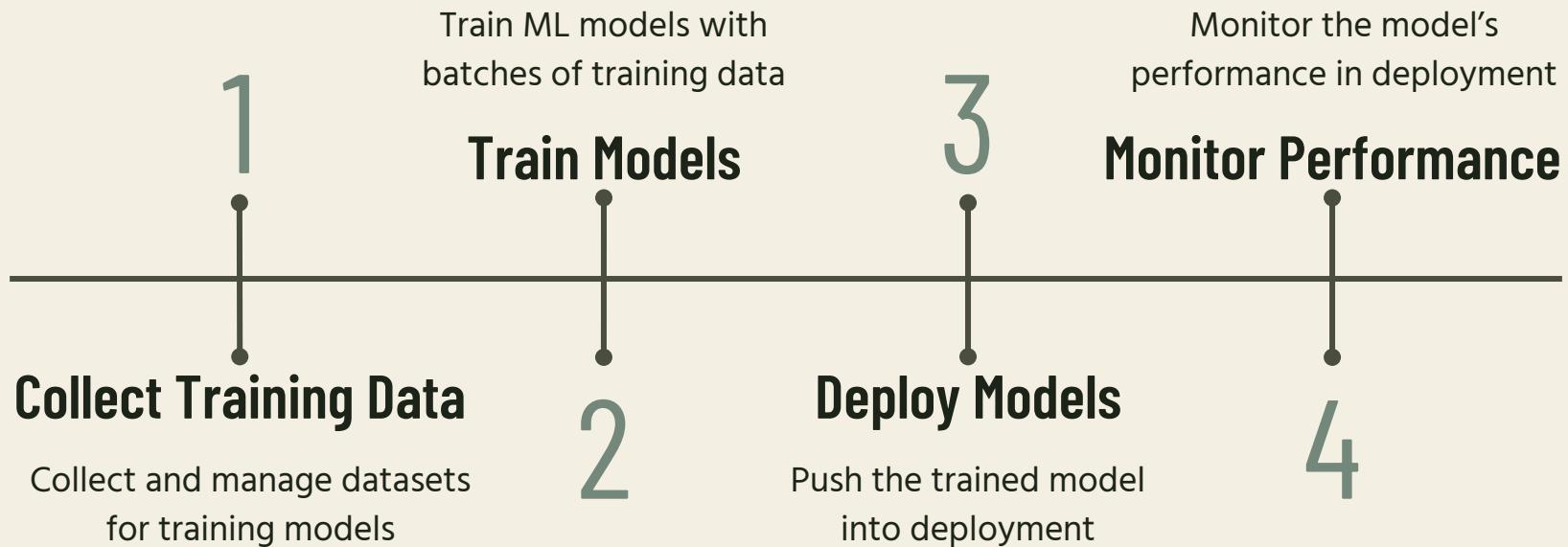
Data Maintenance

Integrate, update and
clean datasets to
maintain their value

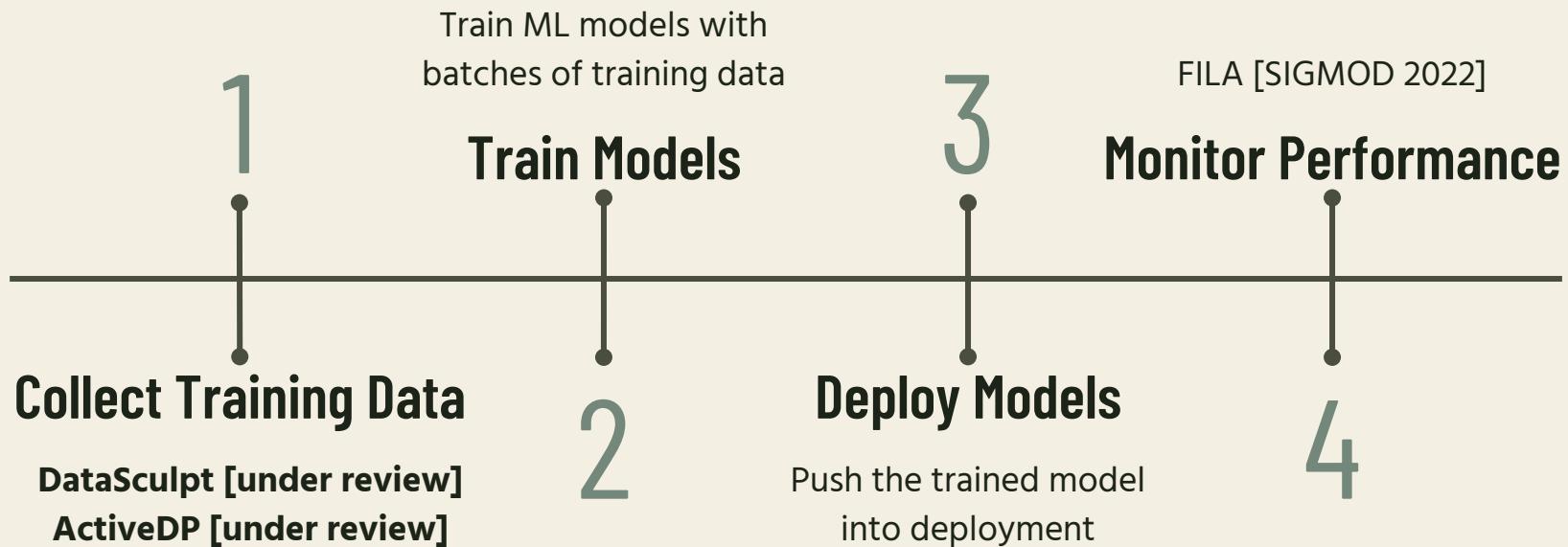
Data Evaluation

Connect data to
business values or task-
specific values

Data Curation for ML Pipelines



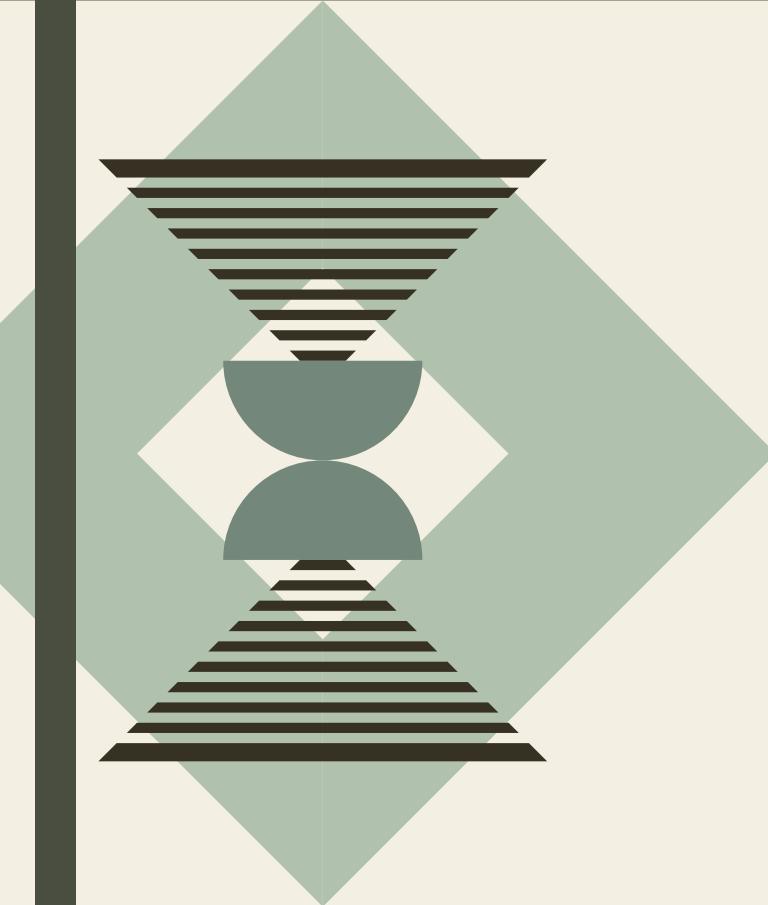
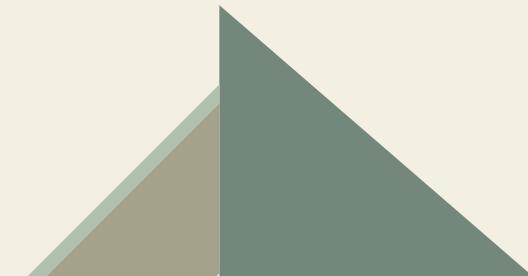
Data Curation for ML Pipelines



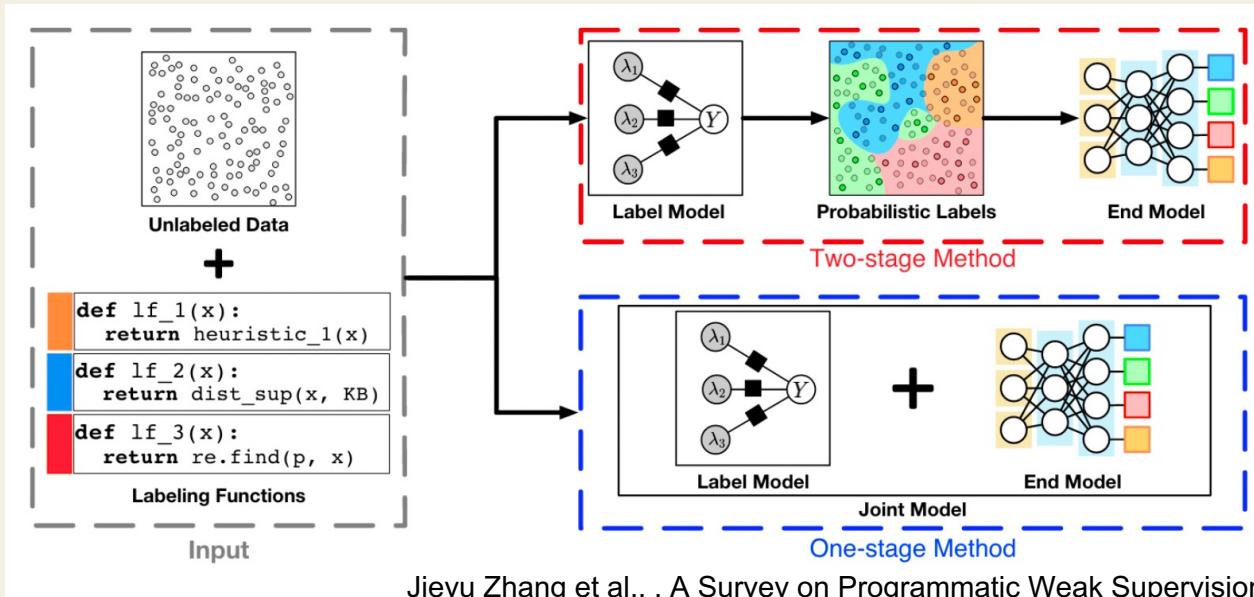
02

DataSculpt

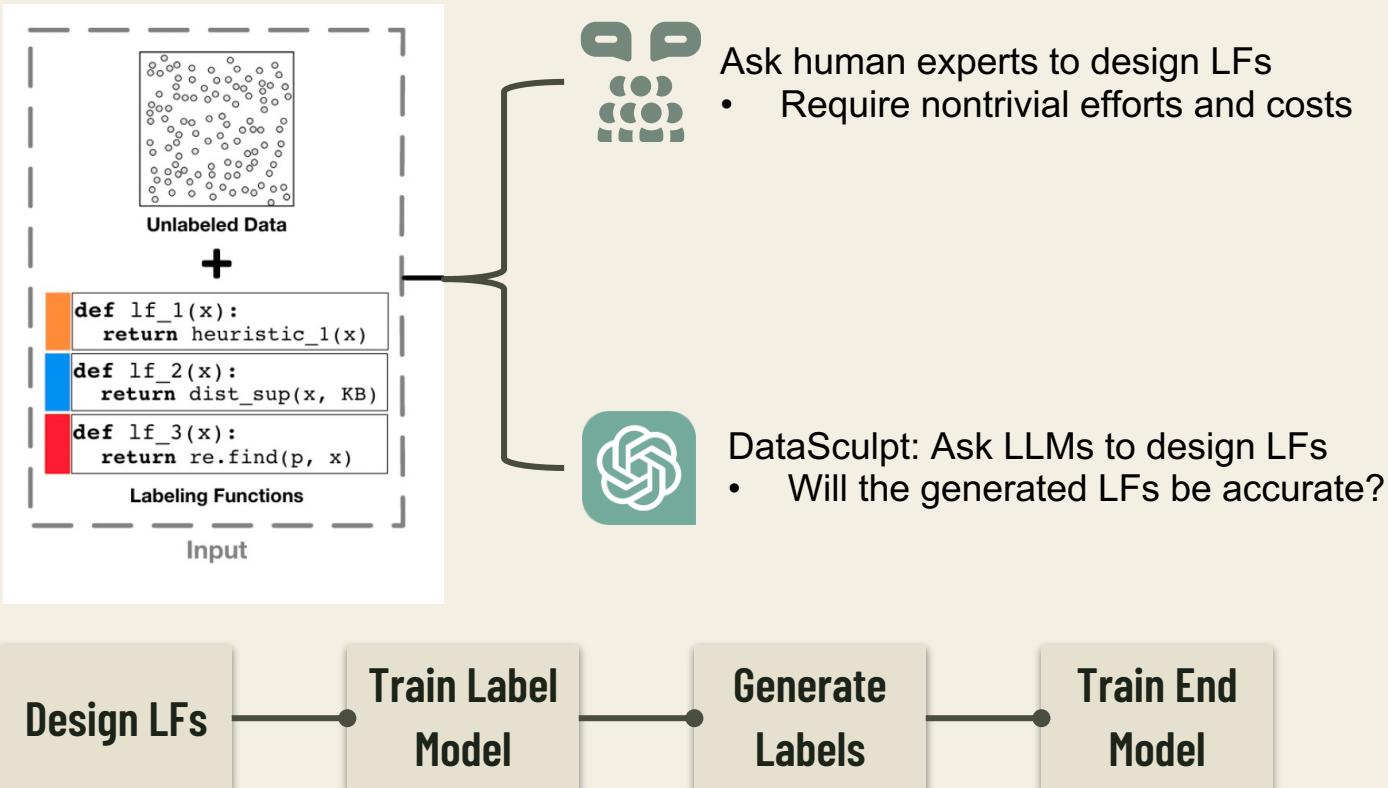
Automatically design label functions by
prompting large language models



Programmatic Weak Supervision



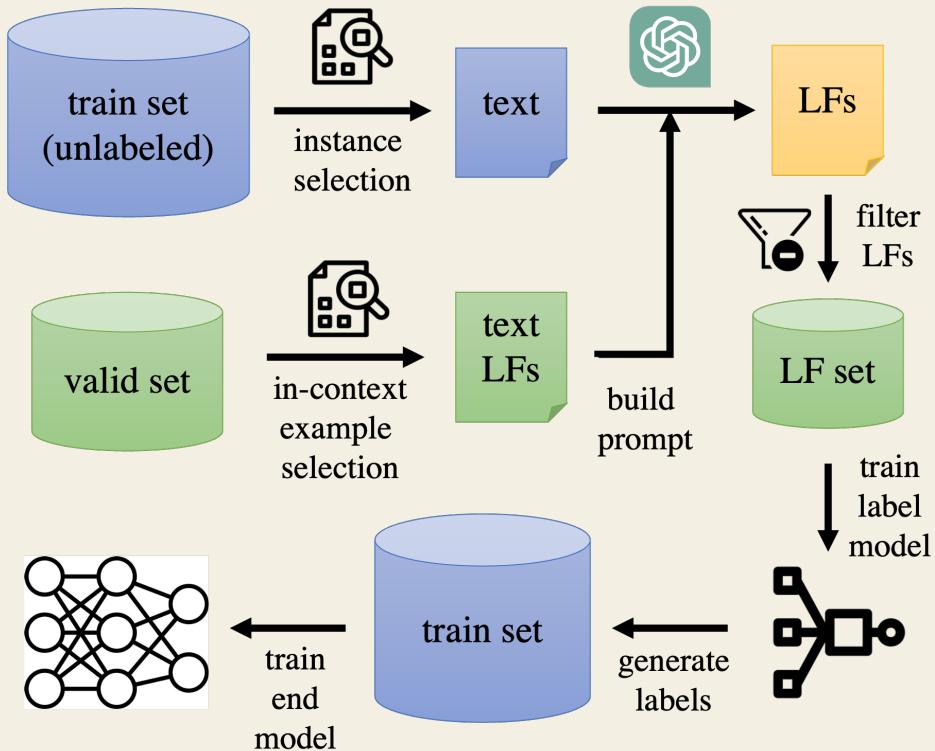
Programmatic Weak Supervision



Research Questions

- RQ1: In which cases can large language models design accurate label functions?
- RQ2: How will the current prompting methods, such as chain-of-thought and self-consistency, affect the performance of label function design?
- RQ3: How do different LLMs (GPT-3.5, GPT-4, Llama-2) perform in designing label functions?

DataSculpt Overview



DataSculpt Prompts

task
description

SYSTEM PROMPT:

You are a helpful assistant who helps users in a sentiment analysis task. In each iteration, the user will provide a movie review. Please decide whether the review is positive or negative. (0 for negative, 1 for positive)
After the user provides input, first explain your reason process step by step. Then identify a list of keywords that helps making prediction. Finally, provide the class label for the input.

USER PROMPT:

Query: dead husbands is a somewhat silly comedy about a bunch of wives conspiring to bump off each others husbands...

Explanation: the review is negative as it thinks the movie is silly.

Keywords: silly

Label: 0

Query: this movie is an extremely funny and heartwarming story about an orphanage...

Explanation: the review is positive as it describes the movie as funny and heartwarming.

Keywords: funny, heartwarming

Label: 1

in-context
examples

user
query

Query: first the cgi in this movie was horrible I watched it during a marathon of bad movies on the scifi channel...

SYSTEM PROMPT:

You are a helpful assistant who helps users in a chemical disease relation extraction task. In each iteration, the user will provide a biomedical passage, followed by a question asking whether a chemical causes a disease, Please decide whether the chemical causes the disease based on the passage. (0 for the chemical does not cause the disease, 1 for the chemical causes the disease.)

After the user provides input, first explain your reason process step by step. Then provide a list of regular expression such that if a passage matches the regex, it is likely to have the same label with the current input. Use {{A}} to represent the first entity and {{B}} to represent the second entity occur in the user's query. Use [SEP] to separate multiple regular expressions. Finally, provide the class label for the input.

USER PROMPT:

Query: During dipyridamole-induced hyperemia, 12 of the 16 dogs with a partial coronary stenosis had a visible area of hypoperfusion... Does dipyridamole cause hyperemia?

Explanation: The claim states that dipyridamole induced hyperemia, indicating a causal relationship between them.

Regex: {{A}}-induced {{B}}

Label: 1

...

Query: In the present study we aimed to investigate plasma levels of CGRP during headache induced by the NO donor glyceryl trinitrate (GTN) ... Does GTN cause headache?

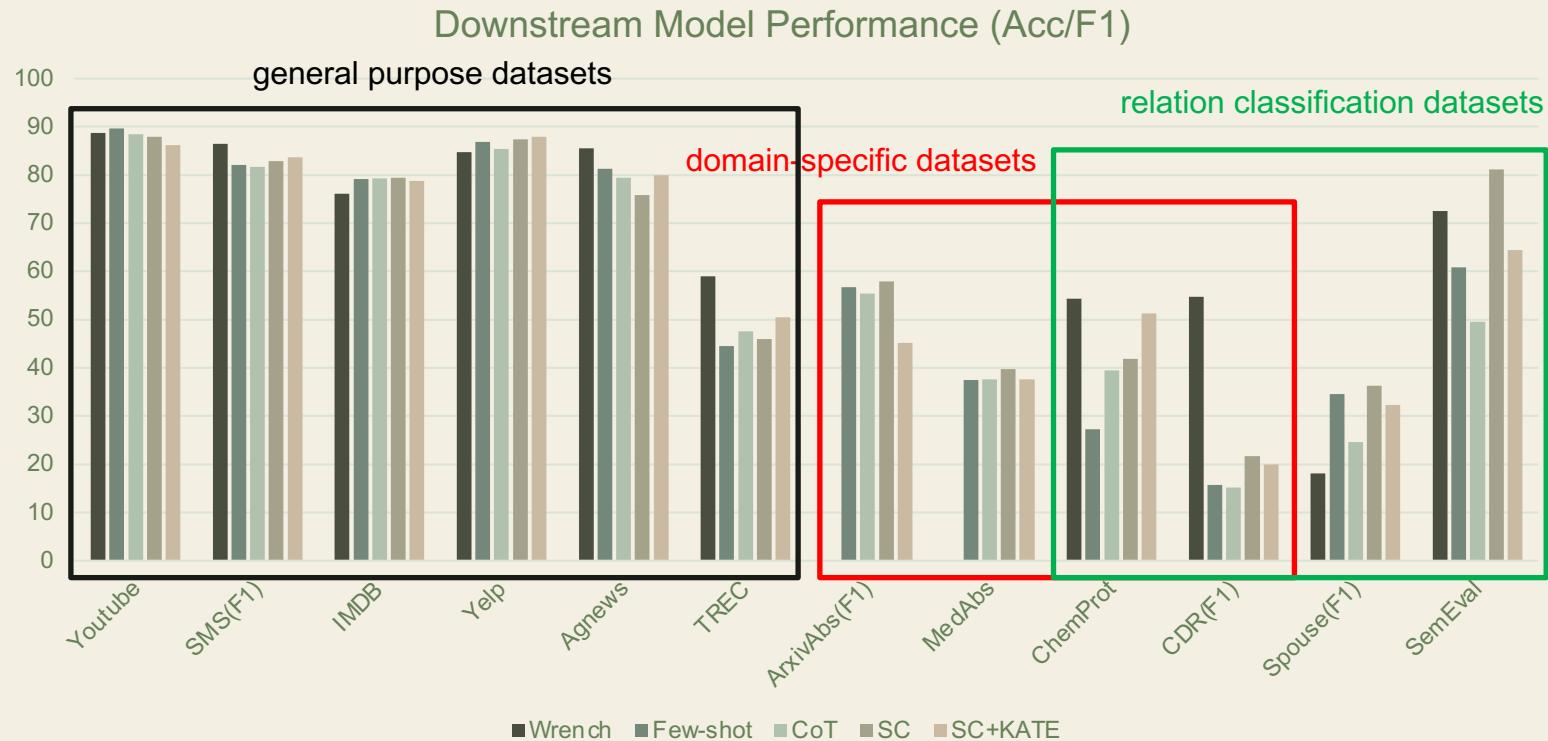
Experiment Setup

- 12 real-world datasets, 8 for text classification and 4 for relation classification
- Iteratively prompts 50 query instances to the LLM to design LFs

Table 1: Datasets used in Evaluation.

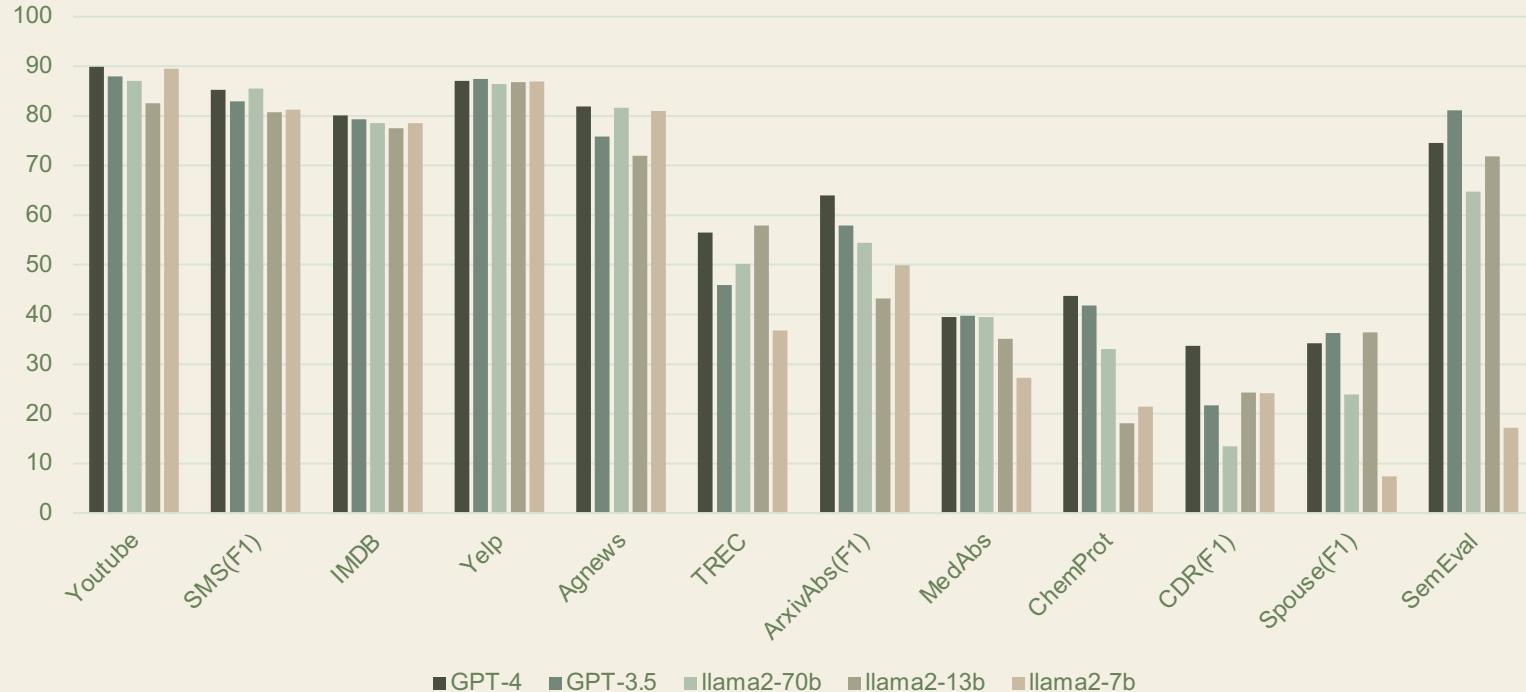
Task	Domain	Dataset	#Class	#Train	#Valid	#Test
Spam Cls.	Review	Youtube [1]	2	1586	120	250
	Text Message	SMS [2, 4]	2	4571	500	500
Sentiment Cls.	Movie	IMDB [27, 35]	2	20000	2500	2500
	Review	Yelp [35, 47]	2	30400	3800	3800
Topic Cls.	News	Agnews [35, 47]	4	96000	12000	12000
	Paper Abstract	ArxivAbs [36]	2	21367	4579	4579
	Biomedical	MedAbs [37]	5	8085	3465	2888
Question cls.	Web Query	TREC [4, 22]	6	4965	500	500
	News	Spouse [9, 31]	2	22254	2811	2701
Relation Cls.	Biomedical	CDR [10, 31]	2	8430	920	4673
	Web Text	SemEval [16, 49]	9	1749	200	692
	Chemical	ChemProt [20, 44]	10	12861	1607	1607

Prompting Methods



Pre-trained LLMs

Downstream Model Performance (Acc/F1)



Key Takeaways

- RQ1: In which cases can large language models design accurate label functions?

The evaluated LLMs can design accurate LFs for tasks requiring general knowledge, but falls short in tasks requiring specific domain expertise, or developing pattern-based LFs for relation classification tasks.

- RQ2: How will the current prompting methods, such as chain-of-thought and self-consistency, affect the performance of label function design?

While the prompting methods help the LLM makes more accurate predictions, they do not help improve LF accuracy in general. However, combining multiple responses to create a larger candidate LF set helps improve the end-to-end performance.

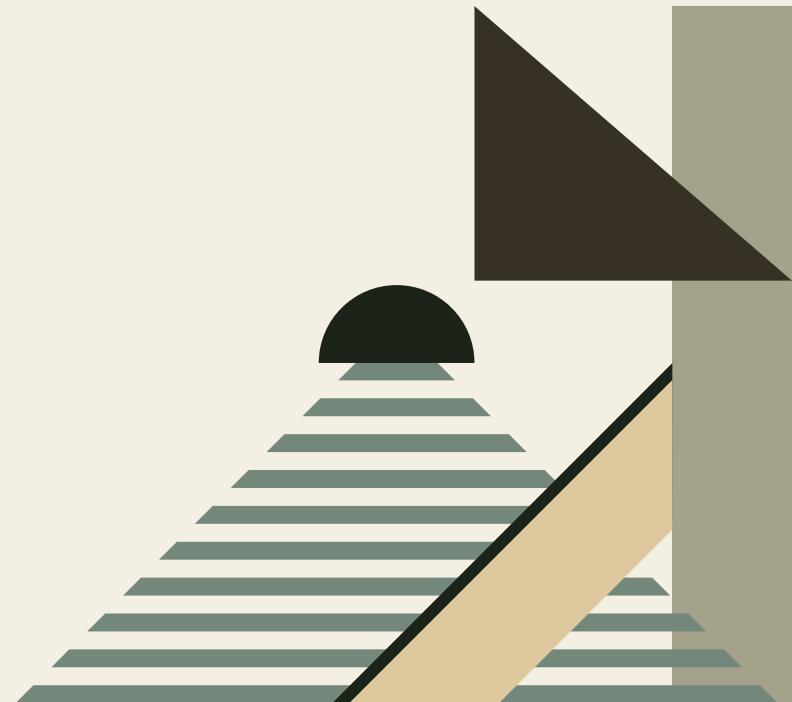
- RQ3: How do different LLMs (GPT-3.5, GPT-4, Llama-2) performs in designing label functions?

In general, GPT-4 has the best performance, and Llama-2-70b model has similar end-to-end performance with GPT-3.5. Smaller Llama-2 models (7b and 13b) have problems following the response format.

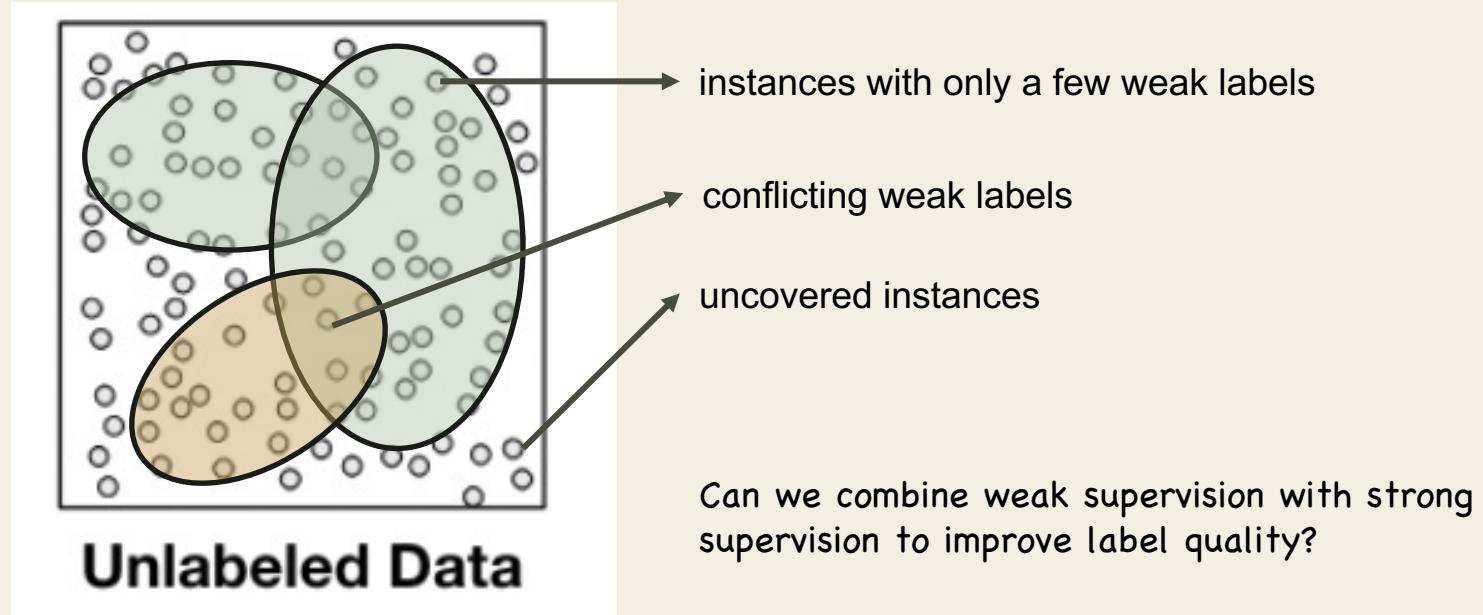
03

ActiveDP

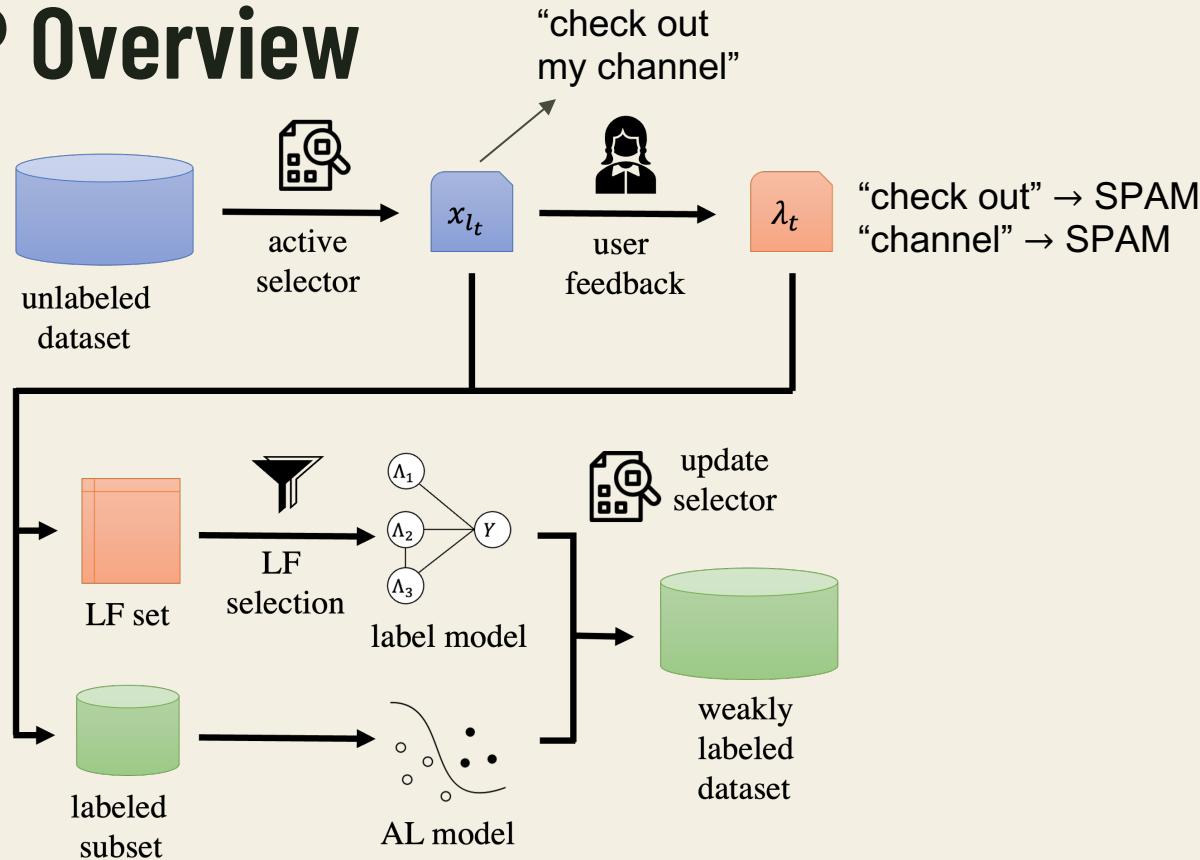
Combine active learning with PWS to improve label quality



Motivation

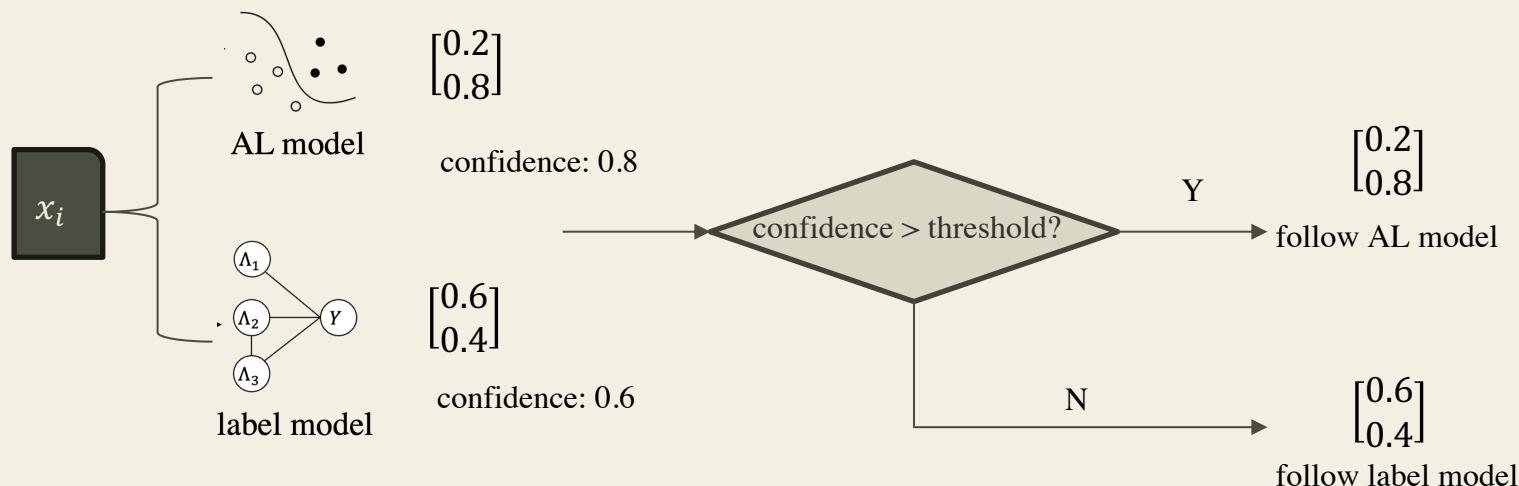


ActiveDP Overview



Label Aggregation

We design a confidence-based method for label aggregation. The threshold parameter is tuned on validation dataset to maximize predicted label accuracy.



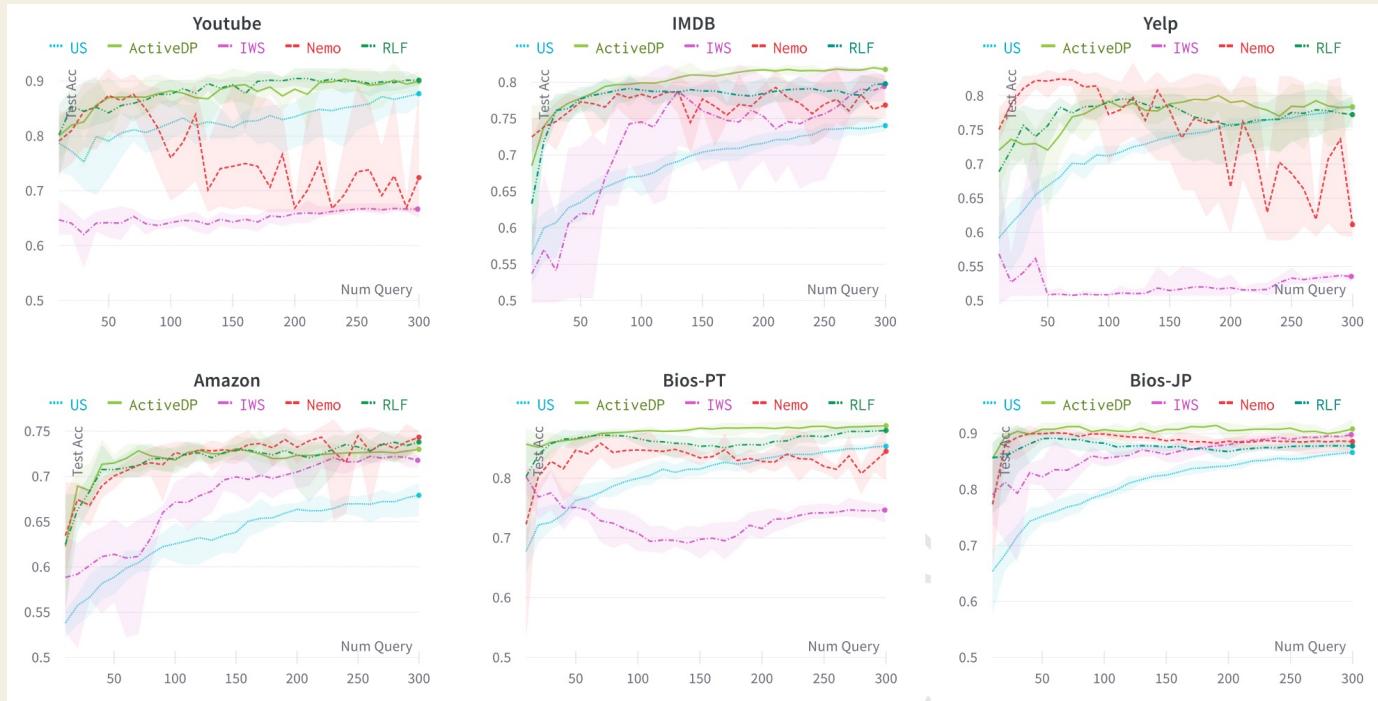
Active Sampler

The active sampler should select samples that are helpful for both the label model and the AL model, we thus propose a hybrid sampler to balance between these two goals

$$x^* = \operatorname{argmax}_x [\operatorname{Entr}(f_a(x))^\alpha * \operatorname{Entr}(f_l(x, \Lambda))^{1-\alpha}]$$

Where $f_a(x)$ and $f_l(x, \Lambda)$ are the soft labels predicted by the AL model and the label model respectively, and $\operatorname{Entr}(p) = -\sum_j p_j \log(p_j)$ is the entropy of soft labels.

Experiments



Downstream model's accuracy on 6 evaluated datasets

Future Directions

Specialized LLMs for annotation

Domain specific pre-
training and finetuning

Active learning for LLMs

Efficient query instance
selection methods for
imperfect models

Synergize multiple paradigms

Combining weak
supervision with
instance annotations

Q&A

CREDITS: This presentation template was created by [Slidesgo](#), and includes icons by [Flaticon](#), and infographics & images by [Freepik](#)