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Update-Aware Information Extraction
Besat Kassaie∗

David R. Cheriton School of Computer Science
University of Waterloo

bkassaie@uwaterloo.ca

Abstract

Information extraction programs (extractors) can be ap-
plied to documents to isolate structured versions of some
content by creating tabular records corresponding to
facts found in the documents. Most optimization tech-
niques deployed in information extraction systems as-
sume that source documents are static. Instead, extracted
relations can be considered to be materialized views de-
fined by a language built on regular expressions. Using
this perspective, we provide an efficient verifier that can
be used to avoid the high cost of re-extracting informa-
tion after a batch update. In particular, we propose an
efficient mechanism to identify updates for which we
can autonomously compute an extracted relation. We
present experimental results that support the practicality
of this mechanism in real world extraction systems.

1 Introduction

When extracted relations or source documents are up-
dated, we wish to ensure that those changes are propa-
gated correctly. That is, we recommend that extracted
relations be treated as materialized views over the doc-
ument database. Within this context, we tackle two re-
search challenges; I) Because extraction is prohibitively
expensive, efficiently maintaining extracted relations up-
to-date is crucial [5, 4]. II) To maintain system consis-
tency, it is essential to translate updates on extracted
views into corresponding document updates [3].

In this talk, I start by exploring update-aware infor-
mation extraction, shedding light on the aformentioned
critical issues that arise when dealing with updates. Next,
I delve into our research on autonomously computable
information extraction. Additionally, I highlight key
findings from our experimental results for this problem,
demonstrating whether our approach can be used effec-
tively in realistic update and extraction scenarios.

∗This talk is based on joint work with Frank Wm. Tompa: fw-
tompa@uwaterloo.ca

2 Autonomously Computable In-
formation Extraction

We apply static analysis to programs that specify ex-
tractors and updates in order to determine whether re-
extraction can be avoided or reduced. Given a pro-
gram defined as a document spanner [2] and an update
specification, we determine sufficient conditions for au-
tonomously re-computing extracted spans of an updated
document. In particular, we propose three sufficient con-
ditions for updates with respect to an extraction program.
We prove that we require time and space that are poly-
nomial in the size of the extraction program and the
update specification to perform five required tests to
determine that the revised extracted relation can be com-
puted autonomously. Finally, we describe experiments
with realistic extractors conducted on two real-world
datasets to conclude that the runtime overhead imposed
by our verification is small in practice when compared
to re-evaluating extractors, even if the re-evaluation is
performed incrementally [1].
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[1] Fei Chen, AnHai Doan, Jun Yang, and Raghu Ra-

makrishnan. Efficient information extraction over
evolving text data. In Proc. 24th ICDE, pages 943–952.
IEEE Computer Society, 2008.

[2] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and
Stijn Vansummeren. Document spanners: A for-
mal approach to information extraction. J. ACM,
62(2):12:1–12:51, 2015.

[3] Besat Kassaie and FrankWm. Tompa. Predictable and
consistent information extraction. In Proc. DocEng
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[4] Besat Kassaie and Frank Wm. Tompa. A framework
for extracted view maintenance. In Proc. DocEng ’20:
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Towards Efficient and Reliable Data Curation for Machine Learning
Naiqing Guan

Department of Computer Science
University of Toronto

naiqing.guan@mail.utoronto.ca

1 Introduction
Modern machine learning models require large training
datasets to achieve good accuracy, yet manual labelling
and curation of large datasets are both expensive and
time-consuming. Thus, acquiring labelled datasets has
become one of the main bottlenecks in applying machine
learning in practical scenarios. This has motivated re-
searchers to investigate approaches to reduce annotation
costs and instigated corporate activity on labelling ser-
vices.

The programmatic weak supervision (PWS)
framework [Ratner et al.(2016), Ratner et al.(2017),
Zhang et al.(2022)] provides an approach to automati-
cally label large datasets without manually annotating
specific instances. In the PWS framework, users
represent weak supervision sources in the form of label
functions (LFs), which are programs that provide noisy
labels to a subset of data. Since the label functions have
varying accuracy and may exhibit ad-hoc correlations, a
label model is designed to aggregate noisy, weak labels
into probabilistic labels. The aggregated labels are then
used to train the downstream model.

While the PWS framework reduces annotation costs, it
still has some limitations. First, the design of LFs requires
substantial endeavours and domain expertise, while au-
tomatic LF design is still challenging. Secondly, the la-
bels generated by the PWS framework are usually noisy,
which deteriorates the performance of downstream mod-
els. How to evaluate, control and improve the quality of
LFs and generated labels requires further investigation.
My research aims to improve the efficiency and re-

liability of data curation for machine learning, with a
focus on the PWS framework. In this presentation, I will
discuss two of my recent works in this direction, focus-
ing on automatic LF design and improving label quality,
respectively.

2 Presentation Outline
In the first part of the presentation, I will describe the
background for efficient data curation and introduce the
PWS framework.

In the second part, I will describe two of my re-
cent works in enhancing the efficiency and reliability
of the PWS framework. I will first introduce DataSculpt
[Guan et al.(2023)], which automatically designs LFs by
prompting large language models. We explored an ex-
pansive design landscape in DataSculpt and identified
the strengths and limitations of contemporary LLMs in
LF design. Then I will briefly describe ActiveDP, which
combines PWS with active learning [Settles(2012)] to
combine the strengths of both paradigms and improve
the label quality.
In the third part, I will describe the limitations of the

current PWS framework and propose some future re-
search directions in this area.

References
[Guan et al.(2023)] Naiqing Guan, Kaiwen Chen,

and Nick Koudas. 2023. Can Large Language
Models Design Accurate Label Functions?
arXiv:2311.00739 [cs.CL]

[Ratner et al.(2017)] Alexander Ratner, Stephen H Bach,
Henry Ehrenberg, Jason Fries, Sen Wu, and Christo-
pher Ré. 2017. Snorkel: Rapid training data creation
with weak supervision. In Proceedings of the VLDB
Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

[Ratner et al.(2016)] Alexander J Ratner, Christopher M
De Sa, Sen Wu, Daniel Selsam, and Christopher Ré.
2016. Data programming: Creating large training
sets, quickly. Advances in neural information process-
ing systems 29 (2016), 3567–3575.

[Settles(2012)] Burr Settles. 2012. Active learning. Syn-
thesis lectures on artificial intelligence and machine
learning 6, 1 (2012), 1–114.

[Zhang et al.(2022)] Jieyu Zhang, Cheng-Yu Hsieh, Yue
Yu, Chao Zhang, and Alexander Ratner. 2022. A
survey on programmatic weak supervision. arXiv
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Towards Next-Generation Question Answering Over Knowledge
Graphs Systems via Accurate Benchmarking and Large-Scale

Training
Abdelghny Orogat

School of Computer Science
Carleton University

Abstract
Knowledge graphs (KGs) serve as pivotal information
reservoirs, but their intricate structures and the need
for expertise in structured query languages limit their
accessibility mainly to experts. While the vast potential
of KGs in Question Answering (QA) systems is acknowl-
edged, their complexity often requires users to possess
specific and advanced querying skills.
Since 2010, the advent of QA systems has ushered in

a new era where users can employ natural language for
queries, simplifying the process. The creation of numer-
ous benchmarking datasets aids in training these modern
QA systems, yet choosing the ideal dataset remains chal-
lenging. Current datasets, like QALD, come with their
own set of limitations, emphasizing the urgency to refine
them as KGs gain prominence in sectors such as health-
care and finance. Notably, these benchmarks often lack
quantitative comparisons and employ diverse creation
methods. Additionally, while knowledge graphs continu-
ally evolve, benchmarks remain static, failing to capture
the latest updates and nuances.

In light of these challenges, our research offers a com-
prehensive solution for both benchmarking and training
QA systems that are specifically optimized for KGs. Cen-
tral to our approach is the introduction of CBench [4, 1].
CBench is an innovative, extensible benchmarking suite
devised to provide in-depth analyses of existing QA
benchmarks. It delves into the intricate linguistic, syntac-
tic, and structural attributes of the questions and queries
contained within these benchmarks. Our assessments re-
vealed notable variations across benchmarks in relation
to these properties, making the selection of a mere subset
of them an unreliable practice for QA system evaluation.
CBench stands out by providing not just conventional
metrics but also a granular analysis of the linguistic and
structural attributes of both answered and unanswered
questions. This detailed insight empowers QA system
developers by highlighting areas where their systems
excel and pinpointing where improvements are needed.
Furthermore, our research introduces Maestro [3, 2],

an avant-garde benchmark generation system specifi-
cally tailored for QA over KGs. Maestro is equipped to

produce a benchmark for any KG, provided the KG itself
and, if available, a relevant text corpus that encompasses
the KG’s domain. The benchmarks crafted by Maestro
are exhaustive, encapsulating all salient properties of
natural language questions and structured queries doc-
umented in existing literature, given that the targeted
KG embodies these properties. A standout feature of
Maestro is its ability to generate superior-quality natu-
ral language questions with diverse phrasings, rivaling
those generated manually, thereby ensuring a more ro-
bust evaluation of QA systems.

Future Work
Building on Maestro’s ability to generate annotated ques-
tions and queries, there’s potential for integration with
large language models (LLMs). By utilizing Maestro’s
output, including questions, annotated counterparts, and
structured queries, we aim to train an LLM to create a
superior QA system. The combination of Maestro’s de-
tailed benchmarks and LLM capabilities promises to set
new standards in the QA domain over KGs.

References
[1] A. Orogat and A. El-Roby. CBench: Demonstrat-

ing Comprehensive Evaluation of Question Answer-
ing Systems over Knowledge Graphs Through Deep
Analysis of Benchmarks. Proceedings of the VLDB
Endowment (PVLDB), 14(12), 2021.

[2] A. Orogat and A. El-Roby. SmartBench: Demon-
strating Automatic Generation of Comprehensive
Benchmarks for Question Answering over Knowl-
edge Graphs. Proceedings of the VLDB Endowment
(PVLDB), 15(12), 2022.

[3] A. Orogat and A. El-Roby. Maestro: Automatic gen-
eration of comprehensive benchmarks for question
answering over knowledge graphs. Proceedings of
the ACM on Management of Data, 1(2):1–24, 2023.

[4] A. Orogat, I. Liu, and A. El-Roby. CBench: To-
wards Better Evaluation of Question Answering
Over Knowledge Graphs. Proceedings of the VLDB
Endowment (PVLDB), 14(8), 2021.
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Quantum-safe Blockchain- Data security perspective
Ajmery Sultana, Assistant Professor

Department of Computer Science
Algoma University

1 Description of the presentation
Blockchain technology consists of a distributed ledger that operates through a decentralized network of data blocks,
sequentially connected and regulated by consensus mechanisms [1]. Initially developed to underpin cryptocurrencies
like Bitcoin, broader business and technological sectors now recognize blockchains’ potential applicability across
various fields [2], including healthcare [3], communication [4], and smart grids [5]. Blockchains currently rely
on established cryptographic techniques to maintain security. However, the emergence of quantum computing is
shifting the security landscape, as some of the current encryption methods may be compromised by the power of
quantum processors [6]. Therefore, the adoption of advanced encryption protocols within the realm of post-quantum
cryptography is becoming imperative. This presentation will delve into the latest advancements in blockchain
methods that are fortified by post-quantum cryptography. It will highlight quantum-proof blockchain models tailored
for diverse platforms and use-cases, addressing security challenges and offering remedies. Additionally, it will chart
out avenues for future exploration in this cutting-edge area.

References
[1] W. Wang, Y. Yu, and L. Du, “Quantum blockchain based on asymmetric quantum encryption and a stake vote

consensus algorithm,” Scientific Reports, 12(1), 8606, 2022.

[2] J. J. Bambara, and P. R. Allen, “Blockchain. A practical guide to developing business, law and technology
solutions,” New York City: McGraw-Hill Professional, 2018.algorithm,” Scientific Reports, 12(1), 8606, 2022.

[3] I. Yaqoob, K. Salah, R. Jayaraman, and Y. Al-Hammadi, “Blockchain for healthcare data management: opportuni-
ties, challenges, and future recommendations,” Neural Computing and Applications, pp. 1-16, 2021.

[4] L. Zhang, K. Cheng, Y. Xu, and H. Zhu, “A General Access Architecture for Blockchain-Based Semi-Quantum 6G
Wireless Communication and its Application,” International Journal of Theoretical Physics, 61(4), 109, 2022.

[5] B. Khan, I. Ul Haq, S. Rana and H. Ul Rasheed, “Secure Smart Grids: Based on Post-Quantum Blockchain," 19th
International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, pp.
653-658, 2022.
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Optimizing Recursive Joins in Graph Database Management
Systems

Anurag Chakraborty

David R. Cheriton School of Computer Science
University of Waterloo

a8chakra@uwaterloo.ca

1 Abstract
Recursive joins such as shortest, all shortest, and variable
length path queries are a core feature provided by graph
database management systems. However, these queries
are computationally expensive for large datasets and
frequently suffer from high execution time due to skew
from a few nodes being highly connected.
Existing work on efficiently executing these queries

proposes using a morsel-driven parallelism [1] (MDP)
approach for bulk path finding. The MDP approach as-
signs fixed-size "morsels" to threads, which comprise a
set of starting nodes from which the path traversal needs
to be started. This does not address the skew problem
since it does not enable multiple threads to work on the
same recursive join computation at the same time.
This presentation will focus on efficiently executing

recursive join queries by integrating a hybrid paralleliza-
tion scheduler into a GDBMS [2] query pipeline. We
will examine the scheduler’s design within our recur-
sive join operator, morselized workload distribution be-
tween worker threads, query execution plans, the trade-
offs between various approaches such as MS-BFS [3]
and direction optimizing BFS [4] and when to trigger
which approach. We will also explore the use of lock
free data structures used internally by the operator to
handle query cases such as returning path length or re-
turning graph paths to support the concurrent progress
of multiple recursive join computations and experimen-
tal evaluation results obtained on large graphs (LDBC,
LiveJournal, Graph500).

References
[1] D. tenWolde, T. Singh, G. Szárnyas, and P. A. Boncz,

"DuckPGQ: Efficient Property Graph Queries in an
Analytical RDBMS," in Proceedings of the 13th Con-
ference on Innovative Data Systems Research (CIDR
2023)

[2] X. Feng, G. Jin, Z. Chen, C. Liu and S. Salihoğlu,
"Kùzu Graph Database Management System," in

Proceedings of the 13th Conference on Innovative
Data Systems Research (CIDR 2023)

[3] M. Then, M. Kaufmann, F. Chirigati, T. HoangVu, K.
Pham, A. Kemper, T. Neumann and Huy T. Vo, "The
More the Merrier: Efficient Multi-Source Graph
Traversal," VLDB 2014

[4] S. Beamer, K. Asanovic and D. Patterson, "Direction-
Optimizing Breadth-First Search," SC ’12: Proceed-
ings of the International Conference onHigh Perfor-
mance Computing, Networking, Storage and Anal-
ysis
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Do Programming Languages need Query Languages?
Jelle Hellings

Department of Computing and Software
McMaster University

1280 Main Street West, Hamilton, ON, Canada

1 Introduction
Data processing plays a central role in many general-
purpose programs. This central role is underlined by
the functionality included in standard support libraries
provided by modern programming languages. Take, for
example, the C++ standard library: this library includes
several efficient data structures to represent data collec-
tions and a plethora of algorithms to operate on these
data collections. Indeed, the algorithms in the C++ stan-
dard library can even be used to perform all elementary
relational algebra operations. Furthermore, the recently
added <ranges> functionality even allows for the high-
level expression of data processing operations via views.
To illustrate a high-level data processing task using

views, consider the following program that queries for
parents of children living in Hamilton:

using namespace std::views;

auto where_pred = [](auto l)
{ return l.place == "Hamilton"; };

auto product_pred = [](auto t)
{ auto [po, p] = t;

return po.child == p.name; };

for (auto [po, p] : cartesian_product(
parents,
persons | filter(where_pred)) |

filter(product_pred)) {
std::cout << po.parent << std::endl;

}

Similar functionality exists in most major programming
languages, e.g., LINQ in C# and other .NET languages,
Streams in Java, and list comprehensions in Python.

Although these data processing functionalities do pro-
vide the ability to express complex queries, they do not
guarantee performance: it is up to the programmer to
ensure an efficient program. A programmer can do so by
selecting the proper ways to structure, store, and main-
tain the data; the proper operations to perform on the
data; and the most efficient order of these operations.
In the example provided above, the programmer made

several poor decisions, e.g., by excessive copying and by
performing a potentially-expensive Cartesian product.

The attention to detail required for a performant data
processing program in C++ is in sharp contrast to how
any database systemwith a high-level query language op-
erates. For example, in a Datalog-based database system,
one could express the above query via the query:

Result(parent) :- parents(parent, c),
persons(c, "Hamilton").

The above Datalog query is significantly simpler than
the C++ program provided before. Furthermore, it is
highly likely that the database system will produce a
query evaluation strategy that is close to optimal (e.g.,
by using any indices available on parents and persons)
and much more efficient than the approach expressed by
the C++ program.

2 Problem Statement
Not all data processing tasks happen in an environment
in which a database system is available. Hence, shift-
ing data processing tasks toward database systems for
efficiency reasons is not always an option.
As an alternative, we propose a support library via

which one can embed high-level database-like data ab-
stractions and queries within the program (as-if these
where any ordinary data structure or algorithm). In spe-
cific, our support library embeds support for Datalog
queries and for specifying data structures that manage
relational data (including primary key and foreign key
constraints) into C++.

A crucial part of our approach is the development of a
compile-time query optimizer than can produce highly-
efficient query evaluation algorithms given only the in-
formation available when compiling source code: the
queries itself and the data structures on which these
queries will be evaluated. By performing query optimiza-
tion once at compile-time, we are able to apply the zero-
cost principle within our proposed library by eliminating
any unnecessary overheads and, hence, provide perfor-
mance close to (or even surpassing) carefully-crafted data
processing algorithms.

Ontario DataBase Day Session 2 (11:40–12:00)
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Eventually Durable Replicated State Machines
Kriti Kathuria, Ken Salem

University of Waterloo
first.last@uwaterloo.ca

Consider a replicated key-value (KV) store as an ex-
ample of a replicated state machine. It consists of a
key-value store at each site and a replicated log. The
interface it exposes is put(key, value) and get(key). put
creates an entry in the replicated log, and once the en-
try has achieved majority replication, creates/updates
the key-value pair. get returns the latest value of the
key. The KV store guarantees that if a put succeeds, a
subsequent get will see its effect regardless of failures.
This write durability can be guaranteed because the put
does not return until it has achieved majority replication.
Therefore, durability is an expensive guarantee.

Hence, latency-sensitive applications may choose to
forgo durability for better performance in an ad-hoc man-
ner, like acknowledging put operations without wait-
ing for them to fully replicate. We present Eventually
Durable (ED) replicated state machines and establish a
principled approach for the applications to reason about
performance/durability tradeoffs they already make.

Like a regular KV store, an ED KV store also consists
of a key-value store at each site and a replicated log. It
also exposes a put and a get interface. get works like in
the regular KV store. put, on the other hand, does not
guarantee durability when it returns. A put may become
durable eventually, after it returns. In the meantime,
the application may proceed under the assumption that
the put will eventually become durable. That is, the
application can speculate on the eventual durability of
the put operation.
Additionally, the ED KV store provides a sync opera-

tion which returns after all preceding puts, and as a re-
sult, values read by preceding gets, have become durable.
sync is a tool for the application to resolve speculation
and thus, manage the risks associated with durability
speculation.

Applications accept the risk that the ED KV store will
lose some acknowledged puts in the event of a failure.
The ED model provides clear failure semantics that allow
applications to reason about possible data loss. Specifi-
cally, the ED model guarantees that a failure will result
in the resolution of all existing speculation — the specu-
lative entries that survive the failure will become durable
and will survive forever. The entries that get lost will
never reappear. In this way, there will only ever be a
single speculative “future” for the ED KV store.

Figure 1: Behaviour of the replicated log

Fig.1 illustrates the behavior ED KV store’s underlying
replicated log across a failure. Green depicts the durable
portion of the log and blue/pink depicts the speculative
portion. (a, b, c) show the log before a failure, and (d, e,
f) show the log after the failure. At first, the log contains
some durable entries and some speculative entries (a).
Then there is a failure (b) due to which some specula-
tive entries disappear (c). After the failure, the surviving
pre-failure speculation has become durable (d). The appli-
cation starts speculating again (e) and as time progresses,
a prefix of the new speculative entries is made durable,
and more speculative entries are added (f).

To support an ED replicated state machine, we have de-
veloped an ED variant of the Raft consensus algorithm[1].
ED Raft acknowledges new log proposals without wait-
ing for replication. Failures lead to the loss of speculative
log proposals. We show that ED Raft supports the failure
semantics described above.

References
[1] Diego Ongaro and John Ousterhout. In search of an

understandable consensus algorithm. In Proceedings
of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, page 305–320,
USA, 2014. USENIX Association.
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Trajectory Data Mining in the Age of Big Data and AI
Manos Papagelis

Electrical Engineering and Computer Science
Lassonde School of Engineering

York University
papaggel@eecs.yorku.ca

1 Introduction

Trajectory Data. Trajectory data consists of records that
capture the movement of objects or entities over time,
typically provided in the form of triplets ⟨𝑜, 𝑡, (𝑥,𝑦)⟩, rep-
resenting that an object 𝑜 at timestamp 𝑡 was at location
with coordinates (𝑥,𝑦). The proliferation of location-
based technologies, geo-enabled smart devices, and ad-
vanced global positioning systems has resulted in the
accumulation of vast amounts of trajectory data.
Trajectory Data Mining. Trajectory data mining fo-
cuses on extracting valuable patterns, information, and
insights from trajectory data, and it has been an active
research direction for a long time [1, 2, 3]. Mining inter-
esting patterns and extracting useful information from
trajectories can find application in diverse domains, in-
cluding intelligent transportation systems, urban plan-
ning and environmental monitoring, and public health.
Due to the broader impact, several trajectory-related
research problems have been of interest, including tra-
jectory similarity, prediction, clustering, classification,
simplification, outlier detection, and imputation.

2 Our Research Contributions
Over the last years, we have been revisiting classic trajec-
tory data mining problems through the lens of modern
technologies and methods, including big data analysis,
graph mining / network analysis, and deep learning meth-
ods. Our journey includes methods for:

• Trajectory simplification (ACM SIGSPATIAL ’23):
We presented PathletRL, a deep reinforcement
learning method for identifying a small set of tra-
jectory building blocks, known as pathlets, that can
compactly represent a vast number of trajectories.

• Generating higher-order trajectory data (ACM
SIGSPATIAL ’23). We presented Point2Hex, a
method and tool for generating higher-order mobil-
ity flow datasets from raw trajectory data.

• Trajectory-user linking (IEEE MDM ’23): We pre-
sented tulhor, a Transformer-based model that

links anonymous trajectories to the respective users.
• Trajectory network analysis (IEEE MDM ’18;
GeoInformatica, 23, ’19; IEEE BigData ’18; IEEE
MDM ’20): We presented methods for modeling in-
teractions of moving objects using graphs, including
methods for (i) trajectory node centrality computa-
tion and for (ii) mining pedestrian group dynamics.

• TransportationOptimization (ACMSIGSPATIAL
’22, ACM SIGSPATIAL ’22): We presented methods
for (i) forecasting the performance of road intersec-
tions, and for (ii) the vehicle navigation problem.

• Mobility and Epidemics (ACM SIGSPA-
TIAL/SpatialEpi ’23, ACM SIGSPATIAL/SpatialEpi
’23, IEEE MDM ’22): We presented methods for
modeling epidemic spreading in mobility networks.

3 Presentation Structure
In this presentation we will delve into our recent endeav-
ors on trajectory data mining, emphasizing its contem-
porary and evolving nature that stems from the incor-
poration of novel deep learning methods for addressing
long-established problems. Depending on time, we will
present our recent work on trajectory-user linking, a
trajectory classification problem aimed at connecting
anonymous trajectories to their respective users (IEEE
MDM ’23). Wewill also present our recent work on trajec-
tory dictionary construction, which aims at constructing
a trajectory pathlet dictionary (ACM SIGSPATIAL ’23).

References
[1] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar.

Spatio-temporal data mining: A survey of problems
and methods. ACM Comp. Surveys, 51(4), Aug 2018.

[2] Ali Hamdi et al. Spatiotemporal data mining: a sur-
vey on challenges and open problems. Artificial In-
telligence Review, 55(2):1441–1488, Feb 2022.

[3] Yu Zheng. Trajectory data mining: An overview.
ACM Trans. Intell. Syst. Technol., 6(3), May 2015.
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sGradd: Towards RELIABLE S.t..r...e....ami..ng Graph Analytics
Aida Sheshbolouki

David R. Cheriton School of Computer Science
University of Waterloo

aida.sheshbolouki@uwaterloo.ca

1 Transient Concepts in Graphs
The continuous generation of relations among entities
and the growing need to run queries over them neces-
sitate Streaming Graph Management Systems (SGMS,
such as s-graffito1). These systems deal with dynamic
and high velocity and volume of the data arrivals while
generating reliable outputs. SGMS generates unreliable
outputs when input data is new, temporal, incomplete, or
adversely manipulated and the system does not recognise
and manage it properly [2, 3]. A main cause identified for
this problem is Concept Drift (CD), which occurs when
a change in a hidden context induces changes in a target
concept [4]. Understanding, detecting, and adaptation
to CD in streaming data is (i) challenging due to stateful
and blocking operations, and (ii) impactful in a variety
of practical scenarios [5].
The literature is mostly focused on black-box drift

detection and adaptation integrated within supervised
learning systems, assume independence of data instances,
and the target concepts defined as class labels. These
assumptions and design choices do not always work. In
this talk, I will discuss the challenges of designing a CD
detection framework and introduce sGradd, a streaming
graph framework for drift ddetection.

2 Challenges
CD in data streams is commonly considered as a change
in underlying probability distribution of data points,
which are generated independently [1]. However, stream-
ing graph records are usually interconnected and de-
pendent. Moreover, current definition implies detection
based on comparing data distribution over window sam-
ples using fixed size sliding windows. When the stream-
ing rate is highly dynamic with significant rises, adaptive
window sizes are more efficient. Thus, we need a CD
definition to enable any detection solution in streaming
graphs.

The challenges are designing an unsupervised CD de-
tection method and also an effective performance eval-
uation. Real-world streaming data with drift labels are

1dsg-uwaterloo.github.io/s-graffito/

not easy to acquire. Moreover, the accuracy and latency
of the detection are tightly bounded together and differ-
ent drift patterns require different examinations. I will
discuss how we approached these challenges and what
tools and techniques we developed to address them.

3 sGradd
I will introduce sGradd, which detects drift in the gener-
ative sources. This detection is the first operation when
data becomes available in input monitor of SGMS. sGradd
has two main components: one for data management
and the second for drift detection constructed based on
multidisciplinary techniques. I will explain how sGradd
ingests data, updates analytic primitives, performs CD
detection, and streams out drift signals with descriptions
about their occurrence to inform the next analytics.
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1 Introduction to GaussDB
GaussDB is a distributed relational database from
Huawei. It supports intra-city cross-AZ deployment
[1] with zero data loss. With a distributed architecture,
GaussDB supports petabytes of storage and contains
more than 1,000 nodes per DB instance. It is highly avail-
able, secure, and scalable and provides services including
quick deployment, backup, restoration, monitoring, and
alarm reporting for enterprises. The overall architecture
of a distributed instance of GaussDB is as Figure 1, which
is a share-nothing distributed cluster with log replication
HA. GaussDB is built on top of openGauss 1, which is
a multi-core-oriented open-source relational database
that provides ultimate performance, full-link service and
data security, AI-based tuning [2], and efficient O&M
capabilities. This leading database at enterprise level is
developed in collaboration with global partners and is
released under the Mulan Permissive Software License
v2. openGauss deeply integrates Huawei’s years of R&D
experience in the database field and continuously builds
competitive features based on enterprise-level scenario
requirements.

2 Challenges and Opportunities
of GaussDB

Huawei is actively working with industry and ecosys-
tem partners worldwide, promoting joint innovation
among businesses, academia, research institutes, and
users to create practical value based on the needs of dif-
ferent industries. We promote cross-domain and cross-
technology collaboration in various forms, in order to
tackle real-world problems that different industries face.
The openGauss kernel was derived from PostgreSQL
and focused on building advance features for architec-
ture, transactions and storage engines with performance
optimization. It is deeply optimized for ARM architec-
ture and retains compatibility with x86 architecture. In
this presentation, we will cover the main challenges and
opportunities for openGauss and GaussDB, e.g., disag-
gregated architecture, hybrid data processing, unified

1https://docs.opengauss.org/en

Figure 1: GaussDB Architecture

storage engine [3]. Huawei will continue to work with
developers and partners in building the openGauss com-
munity for a prosperous global ecosystem.

3 Open Discussions
In this section, we will discuss a few open challenges
from an industry perspective towards the database com-
munity [4].
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1 Introduction
Graphs have been the natural representation of data in
many domains. With graph structured data, the most in-
teresting operation is to compute connected components
(CCs) [4], which are subsets of vertices in a undirected
graph such that all vertices in the subset are connected
via paths. Analyzing CCs has wide applications in prac-
tice, including social networks, transport networks, etc.

In modern data-driven applications, stream processing
[5] is of significant importance. In stream processing,
computations are typically applied in sliding windows
[1] that are continuous finite subsets of streams over
the infinite input stream. Sliding windows are defined
using two parameters range and slide. For instance, a
sliding window with range 3 hours and slide 2 minutes
includes all the streaming data of the last 3 hours and the
window is updated every 2 minutes, i.e., deleting expired
streaming data and inserting new streaming data.
The naive approach to compute sliding window con-

nectivity is to traverse the streaming graph in each
window instance of the sliding window, e.g., perform-
ing breadth-first-search (BFS) in each window instance.
Apparently, the naive approach cannot meet the re-
quirement of real-time processing, which asks for high-
through and low-latency computations. A non-trivial
method is to use the well-known fully dynamic connec-
tivity (FDC) data structures [2, 3]. Specifically, FDC sup-
ports 3 operations: insert, delete, and query. Obvi-
ously, the insert and delete operations supported by
FDC can be used to deal with the updates required by slid-
ing windows. The main bottleneck of the FDC approach
is that the delete operation can have high latency as it
requires traversing the entire graph in the worst case.

We design the bidirectional incremental computation
(BIC) model to efficiently compute sliding window con-
nectivity, which can reduce the problem of sliding win-
dow connectivity into a bidirectional computation. The
main idea of BIC is that (i) streaming edges with con-
tiguous timestamps are grouped to form disjoint chunks;
(ii) window instances are split according to chunks; (iii)
queries are processed by applying partial computations

in chunks followed by merging the corresponding partial
results. Specifically, we compute two kinds of buffers
for each chunk: forward and backward buffers. Forward
buffers are computed incrementally by scanning stream-
ing edges from the first to the last in chunks while back-
ward buffers are computed in the same way except that
streaming edges are scanned from the last to the first
in chunks. These two kinds of buffers are stored and
merged to compute the query result of each window in-
stance. Consequently, the overhead of performing the
costly delete operation can be completely avoided.
In this presentation, we will elucidate the intricacies

of incremental computations within the forward and
backward buffers, as well as expound upon the merging
operation. Our work is ongoing, and in addition to de-
tailing our approach, we will also present preliminary
experimental results in comparison to state-of-the-art
methods based on FDC data structures.
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1 Introduction
In data management, artificial intelligence (AI), and ma-
chine learning (ML) in particular, one wants explana-
tions for certain results. For example, for query answers
in databases (DBs). In ML, one wants explanations for
automated classification results. Explanations that are
based on numerical scores assigned to elements of a model
that may contribute to an outcome have become popular.
These attribution scores attempt to capture the quantita-
tive degree of relevance of a tuple to a query answer; or
a of a feature value to the label assigned to an entity.
In this presentation, we will survey some of the re-

cent advances on the definition, use and computation of
score-based explanations for query answering in DBs,
and some extensions for ML. Special emphasis is placed
on the use of counterfactual reasoning for score speci-
fication and computation. This presentation is heavily
influenced by our recent research.

2 Explanation Scores
Different scores have been proposed in the literature.
Among them we find the responsibility score as found in
actual causality [7, 6], where the notion of counterfac-
tual intervention is fundamental. In data management,
responsibility, in the form of a Resp-score has been used
to quantify the strength of a tuple as a cause for a query
result [9, 3].
Database repairs are common when dealing with in-

consistent DBs [2]. Connections between repairs and
actual causality in DBs has been useful to obtain com-
plexity and algorithm results for responsibility [3]. On
the basis of database repairs, a measure (or global score)
to quantify the degree of inconsistency of a DB has also
been introduced.

The Resp score has to be generalized to deal with non-
binary features in ML [4], which could also be used to
define a fine-grained responsibility in DBs at the attribute
level. The causal-effect score has also been defined and
applied to explain query answers in DBs [10].

The Shapley value of coalition game theory can be used
to define attribution scores in DBs [8, 5]. Since several

∗Prof. Emeritus, Carleton University, Ottawa, Canada

tuples together, much like players in a coalition game, are
necessary to produce a query result, somemay contribute
more than others to a game function represented by the
query result.

The Shapley value has also been used to define expla-
nation scores to feature values in ML-based classification.
Since its computation is intractable in general, tractable
classes of models have been identified [1].
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1 Introduction

Documents in the STEM disciplines rely heavily on the
use of math formulas to express knowledge. Searching
a corpus of such documents, therefore, requires that a
search engine be effective inmatching formulas andmath
terminology, as well as natural language text.
In our presentation, we describe a simple represen-

tation for features extracted from math formulas, our
implementation of a prototypical search engine, and per-
formance results against benchmarks created to evalu-
ate math-aware search engines for community question-
answering.

This research is being conducted in collaboration with
Andrew Kane (PhD 2014, Waterloo).

2 Further Details

Effective math information retrieval has been under in-
vestigation by several students who have worked under
my direction [3, 1, 5] resulting in a best paper award [2]
and a best of labs designation [6]. Notably, this last paper
describes how natural language mathematical questions
can be automatically transformed into formal queries
consisting of keywords and formulas and how the result-
ing formal queries can be effectively executed against
a corpus. A key component of our approach has been
to represent each formula as a bag of math features and
to treat those features as simple search terms. This ap-
proach can be adopted by any conventional, text-based
search engine, including one developed recently to ex-
plore various aspects of search technology.1

We describe the three major processing steps used in
our system:
1. query construction (how to convert natural lan-

guage questions into formal queries by selecting
and augmenting the text and formulas),

2. mapping formal queries to search terms (especially,
how to choose suitable features to represent math
formulas), and

1https:// github.com/andrewrkane/mtextsearch

3. indexing and querying with the search engine (how
to run queries efficiently and rank results effec-
tively).

We also summarize some of our experimental results
from the ARQMath Labs [4], a benchmark based on a
collection of questions and answers from Math Stack
Exchange (MSE) between 2010 and 2018 consisting of
approximately 1.1 million question-posts and 1.4 million
answer-posts. The main task presents experimenters
with 100 mathematical questions (selected by the orga-
nizers from MSE question-posts in a subsequent year)
and asks for ranked lists of potential answers among
existing answer-posts in the collection.

Finally, we outline what research we intend to under-
take to improve each of the three processing steps.
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1 Introduction
Our society is creating and storing exponentially increas-
ing amounts of data. What is often less thought of are
the storage engines that maintain this data and facilitate
the extraction of knowledge from it. In the late-2000s, a
new class of storage engines emerged that prioritize the
e�ciency of ingesting new data. They include Google’s
BigTable, Amazon’s DynamoDB, Facebook’s RocksDB,
as well as Apache Cassandra and HBase. These engines
have become indispensable for a wide range of applica-
tions, including cloud storage, blockchain, machine learn-
ing, etc. Nevertheless, a lingering problem is that their
performance deteriorates with respect to the amount of
data they store. This, in turn, causes applications run-
ning on top to have to spend disproportionately more
time, energy, and hardware in order to, say, transact on a
blockchain, train a deep learning model, or add a photo
to the cloud. This talk will discuss how to allow such
storage engines to function more e�ciently as the big
data that they store continues to grow.

2 Background
LSM-Tree. Modern storage engines streamline new ap-
plication data into storage (disk or SSD) as small sorted
�les, which are later merged into larger sorted �les. This
organization is known as a log-structured merge-tree
(LSM-tree). With LSM-tree, merging �les more eagerly
creates higher overheads for writes but allows for faster
queries as there are fewer �les to search. This trade-o� is
controlled by a compaction policy, which dictates which
�les to merge under which conditions.
Filters. Each �le of an LSM-tree is assigned a “�lter”

in fast memory (DRAM chips). A �lter is a compressed
approximate representation of a �le that takes up little
space. Filters can be quickly searched to rule out �les
that do not contain the target data. Thus, they elimi-
nate unnecessary accesses to slower storage. The more
space a �lter is assigned, the more accurate it becomes
thus allowing queries to rule out the �le with a higher
probability. An LSM-tree implements a �ltering policy to
decide how much memory to assign each �lter. Together,

the �ltering and compaction policies govern a three-way
trade-o� between the overheads of queries, writes and
space

3 Research Problem
As with most tree structures, LSM-tree’s query and write
overheads grow logarithmically with respect to the data
size. The intuition is that as the data grows, the number
of �les that must be queried and merged grows too. In
our current era of exponential data growth, logarithmic
scalability implies linearly increasing overheads with
respect to time. The outcome is rapidly deteriorating
performance. While it is possible to o�set one of the
overheads growing by another (e.g., by merging more
eagerly or allocating larger �lters to prevent query over-
heads from increasing), it is impossible with existing
designs to keep all three overheads steady at the same
time as the data grows. This begs a question: is it possi-
ble to achieve sub-logarithmic query and write costs for
an LSM-tree, all without hurting space?

4 Talk Content
This talk will discuss a series of papers that tackle the
problem of how to better scale performance as the data
grows in the context of LSM-trees. The talk can be given
at di�erent lengths, from 15 minutes to an hour, depend-
ing on the amount of time available. It will cover at least
two and at most all of the following papers: Monkey
(SIGMOD 2017), Dostoevsky (SIGMOD 2018), LSM-bush
(SIGMOD 2019), Rosetta (SIGMOD 2020), Chucky (SIG-
MOD 2021), and Spooky (VLDB 2022). These papers
show how to co-design the LSM tree’s compaction policy
with its �lters in ways that lead to asymptotic improve-
ments in both query and insertion throughput, meaning
that performance deteriorates more slowly or not at all
as the data grows. This talk will conclude with a vision
towards amorphous storage engines and data structures,
which self-design to optimize any application workload.
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1 Introduction
In this presentation, we describe our journey of trans-
forming SAP IQ into a relational database management
system (RDBMS) that utilizes cheap, elastically scalable
object stores in the cloud [3, 4]. SAP IQ is a three-decade
old, disk-based, columnar RDBMS that is optimized for
complex online analytical processing (OLAP) workloads.
Traditionally, SAP IQ has been designed to operate on
shared storage devices with strong consistency guarantees
(e.g., high-caliber storage area network devices). There-
fore, deploying SAP IQ on the cloud, as is, would have
meant utilizing storage solutions that provide a POSIX
compliant file interface and strong consistency guaran-
tees, but at a much higher monetary cost. These costs
can accumulate easily to diminish the economies of scale
that one would expect on the cloud, which can be unde-
sirable. Instead, we have enhanced the design of SAP IQ
to operate on cloud object stores such as AWS S3 [1] and
Azure Blob Storage [2]. Object stores rely on a weaker
consistency model, and potentially have higher latency;
however, because of these design trade-offs, they are able
to offer (i) better pricing, (ii) enhanced durability, (iii)
improved elasticity, and (iv) higher throughput. By en-
hancing SAP IQ to operate under these design trade-offs,
we have unlocked many of the opportunities offered by
object stores. Experiments using the TPC-H benchmark
demonstrate that we can gain an order of magnitude
reduction in data-at-rest storage costs while improving
query and load performance.

2 Contributions
When developing the cloud-native version of SAP IQ, we
have decided to exploit the strengths of the product as
much as possible and avoid reinventing the wheel. In
particular, SAP IQ benefits from three decades of research
and development when it comes to techniques such as
data compression, partitioning, indexing, prefetching
and loading that we wanted to exploit. Consequently,
in this presentation, we discuss the following aspects of
our design:

1. SAP IQ makes a clear distinction between the logi-
cal and the physical representation of pages in the

system; therefore, we directly map logical pages to
objects in object stores;

2. We enforce a “never write an object twice" policy in
the transaction and buffer managers to handle the
weaker consistency model used in object stores;

3. We implement techniques for efficiently allocating
object keys in a multi-node setting and discuss the
lessonswe have learnt inworkingwith object stores;
and lastly

4. We discuss the design considerations of the Ex-
tended Cache Manager (ECM), that acts as a
read/write cache between the existing buffer man-
ager and the object store [4].
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1 Instance Optimized Database
Traditional databases are often general-purpose software
systems that are typically not built for a specificworkload
or a data distribution. In general, these systems might
provide good performance but probably not the optimal
one. Recently, there has been a push towards leveraging
machine learning based techniques to build database sys-
tems that are self-tuned or instance-optimized [4, 5, 3].
So far, it has achieved significant success in cardinal-
ity estimation and query optimization leading to faster
query execution. However, there has been limited effort
on optimization opportunities that are one level deeper,
namely how to tailor the RDBMS buffer management
module for correlated query workloads.
Buffer management [2, 1] has played a central role

in improving RDBMS performance. Such improvement
for a single query is achieved by exploiting locality of
reference for page accesses and formultiple queries by en-
abling possible sharing of frequent page requests across
queries. Both of these improvements can be pronounced
if one can predict the access patterns of a query fairly
accurately. An effective buffer manager ensures that the
pages that are likely to be requested in the near future are
prefetched in the buffer pool so that they do not result
in costly blocked I/O operations later. Since predicting
future access patterns is a challenging problem, RDBMSs
employ empirical algorithms based on frequency and
recency [2, 1]. While these approaches work well for
simple access patterns, they often fail for more diverse
and complex access patterns inherent in a typical OLAP
setting.

2 Predicting query access patterns
Access patterns in databases are complex and challeng-
ing to predict. The access patterns of a complex SQL
join query involving multiple relations are influenced
by numerous factors such as selectivity (index scan or
sequential scan), the join algorithm used (nested loop vs
hash join), the order in which the relations are joined
and so on. The use of indexes also violate sequential ac-
cess patterns and results in irregular sequences due to the
interleaving of accesses for index and base table pages.

Our empirical analysis shows that NLP techniques do
not work well as the access patterns are too irregular
(thereby having limited temporal patterns) but also very
long (such as millions of tokens for a large relation).
They also have distributional properties (frequency, co-
occurrence and length of sequences) that are inimical to
NLP based approaches. Additionally, they also require
significant time for both training and inference.

PYTHIA is a deep ML predictive model tailored to pre-
dictions of the access patterns of complex correlated
query workloads. It consists of two key components –
a predictor and a prefetcher. Given a query, the goal of
the predictor is to accurately output the relevant page
accesses. The prefetcher then asynchronously fetches
these pages and places them in the buffer pool.
We conduct extensive experiments with PYTHIA inte-

grated into Postgres and demonstrate that it achieves
significant accuracy and a speedup of upto 6x for queries
in the DSB OLAP benchmark.
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